BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 23616545)

  • 1. Multiple sources of striatal inhibition are differentially affected in Huntington's disease mouse models.
    Cepeda C; Galvan L; Holley SM; Rao SP; André VM; Botelho EP; Chen JY; Watson JB; Deisseroth K; Levine MS
    J Neurosci; 2013 Apr; 33(17):7393-406. PubMed ID: 23616545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
    Barry J; Akopian G; Cepeda C; Levine MS
    J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target selectivity of feedforward inhibition by striatal fast-spiking interneurons.
    Szydlowski SN; Pollak Dorocic I; Planert H; Carlén M; Meletis K; Silberberg G
    J Neurosci; 2013 Jan; 33(4):1678-83. PubMed ID: 23345240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways.
    Planert H; Szydlowski SN; Hjorth JJ; Grillner S; Silberberg G
    J Neurosci; 2010 Mar; 30(9):3499-507. PubMed ID: 20203210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.
    Cummings DM; Cepeda C; Levine MS
    ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways.
    Gittis AH; Nelson AB; Thwin MT; Palop JJ; Kreitzer AC
    J Neurosci; 2010 Feb; 30(6):2223-34. PubMed ID: 20147549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional features of medium spiny neurons in the BACHDΔN17 mouse model of Huntington's Disease.
    Goodliffe J; Rubakovic A; Chang W; Pathak D; Luebke J
    PLoS One; 2020; 15(6):e0234394. PubMed ID: 32574176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease.
    Indersmitten T; Tran CH; Cepeda C; Levine MS
    J Neurophysiol; 2015 Apr; 113(7):2953-66. PubMed ID: 25673747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease.
    Galvan L; André VM; Wang EA; Cepeda C; Levine MS
    J Huntingtons Dis; 2012; 1(1):17-25. PubMed ID: 25063187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatal network modeling in Huntington's Disease.
    Ponzi A; Barton SJ; Bunner KD; Rangel-Barajas C; Zhang ES; Miller BR; Rebec GV; Kozloski J
    PLoS Comput Biol; 2020 Apr; 16(4):e1007648. PubMed ID: 32302302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons.
    Govindaiah G; Wang Y; Cox CL
    Neuropharmacology; 2010 Feb; 58(2):413-22. PubMed ID: 19786036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal GABAergic interneuron dysfunction in the Q175 mouse model of Huntington's disease.
    Holley SM; Galvan L; Kamdjou T; Cepeda C; Levine MS
    Eur J Neurosci; 2019 Jan; 49(1):79-93. PubMed ID: 30472747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major Contribution of Somatostatin-Expressing Interneurons and Cannabinoid Receptors to Increased GABA Synaptic Activity in the Striatum of Huntington's Disease Mice.
    Holley SM; Galvan L; Kamdjou T; Dong A; Levine MS; Cepeda C
    Front Synaptic Neurosci; 2019; 11():14. PubMed ID: 31139071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum.
    Damodaran S; Evans RC; Blackwell KT
    J Neurophysiol; 2014 Feb; 111(4):836-48. PubMed ID: 24304860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease.
    Rocher AB; Gubellini P; Merienne N; Boussicault L; Petit F; Gipchtein P; Jan C; Hantraye P; Brouillet E; Bonvento G
    Neurobiol Dis; 2016 Feb; 86():131-9. PubMed ID: 26626081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3.
    Wójtowicz AM; Dvorzhak A; Semtner M; Grantyn R
    Front Neural Circuits; 2013; 7():188. PubMed ID: 24324407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington's disease.
    Miller BR; Walker AG; Shah AS; Barton SJ; Rebec GV
    J Neurophysiol; 2008 Oct; 100(4):2205-16. PubMed ID: 18667541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease.
    Goodliffe JW; Song H; Rubakovic A; Chang W; Medalla M; Weaver CM; Luebke JI
    PLoS One; 2018; 13(8):e0200626. PubMed ID: 30118496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms.
    Farrar AM; Callahan JW; Abercrombie ED
    Exp Neurol; 2011 Dec; 232(2):119-25. PubMed ID: 21864528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.