BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 23616586)

  • 1. Electroencephalogram paroxysmal θ characterizes cataplexy in mice and children.
    Vassalli A; Dellepiane JM; Emmenegger Y; Jimenez S; Vandi S; Plazzi G; Franken P; Tafti M
    Brain; 2013 May; 136(Pt 5):1592-608. PubMed ID: 23616586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice.
    Bastianini S; Silvani A; Berteotti C; Lo Martire V; Zoccoli G
    J Sleep Res; 2012 Apr; 21(2):185-8. PubMed ID: 21883592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice.
    Bastianini S; Lo Martire V; Berteotti C; Silvani A; Ohtsu H; Lin JS; Zoccoli G
    J Sleep Res; 2016 Oct; 25(5):591-595. PubMed ID: 27230703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice.
    Rogers AA; Aiani LM; Blanpain LT; Yuxian S; Moore R; Willie JT
    Brain Stimul; 2020; 13(5):1305-1316. PubMed ID: 32320748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates.
    Willie JT; Renthal W; Chemelli RM; Miller MS; Scammell TE; Yanagisawa M; Sinton CM
    Neuroscience; 2005; 130(4):983-95. PubMed ID: 15652995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency.
    Knudsen S; Gammeltoft S; Jennum PJ
    Brain; 2010 Feb; 133(Pt 2):568-79. PubMed ID: 20129934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.
    Vassalli A; Franken P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298
    [No Abstract]   [Full Text] [Related]  

  • 8. Behavioral state instability in orexin knock-out mice.
    Mochizuki T; Crocker A; McCormack S; Yanagisawa M; Sakurai T; Scammell TE
    J Neurosci; 2004 Jul; 24(28):6291-300. PubMed ID: 15254084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypocretin deficiency in narcolepsy with cataplexy is associated with a normal body core temperature modulation.
    Grimaldi D; Agati P; Pierangeli G; Franceschini C; Guaraldi P; Barletta G; Vandi S; Cevoli S; Plazzi G; Montagna P; Cortelli P
    Chronobiol Int; 2010 Sep; 27(8):1596-608. PubMed ID: 20854137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice.
    De La Herrán-Arita AK; Zomosa-Signoret VC; Millán-Aldaco DA; Palomero-Rivero M; Guerra-Crespo M; Drucker-Colín R; Vidaltamayo R
    Neuroscience; 2011 Jun; 183():134-43. PubMed ID: 21435382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive detection of sleep/wake changes and cataplexy-like behaviors in orexin/ataxin-3 transgenic narcoleptic mice across the disease onset.
    Sato M; Sagawa Y; Hirai N; Sato S; Okuro M; Kumar S; Kanbayashi T; Shimizu T; Sakai N; Nishino S
    Exp Neurol; 2014 Nov; 261():744-51. PubMed ID: 25118620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice.
    Mieda M; Willie JT; Hara J; Sinton CM; Sakurai T; Yanagisawa M
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4649-54. PubMed ID: 15070772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal sleep/wake dynamics in orexin knockout mice.
    Diniz Behn CG; Klerman EB; Mochizuki T; Lin SC; Scammell TE
    Sleep; 2010 Mar; 33(3):297-306. PubMed ID: 20337187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narcolepsy and the hypocretins.
    Wurtman RJ
    Metabolism; 2006 Oct; 55(10 Suppl 2):S36-9. PubMed ID: 16979425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep polygraphic study of children and adolescents with narcolepsy/cataplexy.
    Ferri R; Franceschini C; Zucconi M; Drago V; Manconi M; Vandi S; Poli F; Bruni O; Plazzi G
    Dev Neuropsychol; 2009; 34(5):523-38. PubMed ID: 20183716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of motoneuron function and muscle tone during REM sleep, REM sleep behavior disorder and cataplexy/narcolepsy.
    Peever J
    Arch Ital Biol; 2011 Dec; 149(4):454-66. PubMed ID: 22205591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy.
    Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS
    J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder.
    Luppi PH; Clément O; Sapin E; Gervasoni D; Peyron C; Léger L; Salvert D; Fort P
    Sleep Med Rev; 2011 Jun; 15(3):153-63. PubMed ID: 21115377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice.
    Uchida S; Soya S; Saito YC; Hirano A; Koga K; Tsuda M; Abe M; Sakimura K; Sakurai T
    J Neurosci; 2021 Feb; 41(7):1582-1596. PubMed ID: 33372061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace Amine-Associated Receptor 1 Agonists as Narcolepsy Therapeutics.
    Black SW; Schwartz MD; Chen TM; Hoener MC; Kilduff TS
    Biol Psychiatry; 2017 Nov; 82(9):623-633. PubMed ID: 27919403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.