BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23616792)

  • 1. Chemoenzymatic synthesis and biological evaluation of enantiomerically enriched 1-(β-hydroxypropyl)imidazolium- and triazolium-based ionic liquids.
    Borowiecki P; Milner-Krawczyk M; Plenkiewicz J
    Beilstein J Org Chem; 2013; 9():516-25. PubMed ID: 23616792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic Synthesis of Optically Active Ethereal Analog of
    Borowiecki P
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases.
    Wu XM; Xin JY; Sun W; Xia CG
    Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first (ferrocenylmethyl)imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids.
    Gao Y; Twamley B; Shreeve JM
    Inorg Chem; 2004 May; 43(11):3406-12. PubMed ID: 15154802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,2,4-Triazole-based tunable aryl/alkyl ionic liquids.
    Meyer D; Strassner T
    J Org Chem; 2011 Jan; 76(1):305-8. PubMed ID: 21114248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(1-Vinyl-1,2,4-triazolium) Poly(Ionic Liquid)s: Synthesis and the Unique Behavior in Loading Metal Ions.
    Zhang W; Yuan J
    Macromol Rapid Commun; 2016 Jul; 37(14):1124-9. PubMed ID: 26987872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid.
    Itoh T; Matsushita Y; Abe Y; Han SH; Wada S; Hayase S; Kawatsura M; Takai S; Morimoto M; Hirose Y
    Chemistry; 2006 Dec; 12(36):9228-37. PubMed ID: 17029309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoenzymatic Synthesis of trans-β-Aryl-δ-hydroxy-γ-lactones and Enzymatic Kinetic Resolution of Their Racemic Mixtures.
    Skrobiszewski A; Gładkowski W; Maciejewska G; Wawrzeńczyk C
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities.
    Wang R; Jin CM; Twamley B; Shreeve JM
    Inorg Chem; 2006 Aug; 45(16):6396-403. PubMed ID: 16878951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.
    Liwarska-Bizukojc E; Maton C; Stevens CV
    Biodegradation; 2015 Nov; 26(6):453-63. PubMed ID: 26463469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoenzymatic synthesis of enantiomerically enriched diprophylline and xanthinol nicotinate.
    Borowiecki P; Młynek M; Dranka M
    Bioorg Chem; 2021 Jan; 106():104448. PubMed ID: 33229120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols.
    Lebouvier N; Pagniez F; Na YM; Shi D; Pinson P; Marchivie M; Guillon J; Hakki T; Bernhardt R; Yee SW; Simons C; Lézé MP; Hartmann RW; Mularoni A; Le Baut G; Krimm I; Abagyan R; Le Pape P; Le Borgne M
    Pharmaceuticals (Basel); 2020 Aug; 13(8):. PubMed ID: 32784450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoenzymatic asymmetric synthesis of 1,4-benzoxazine derivatives: application in the synthesis of a levofloxacin precursor.
    López-Iglesias M; Busto E; Gotor V; Gotor-Fernández V
    J Org Chem; 2015 Apr; 80(8):3815-24. PubMed ID: 25786159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Transformations of Pyrrole- and 1,2,4-Triazole-Containing Ensembles, and Generation of Pyrrole-Substituted Triazole NHC.
    Funt LD; Tomashenko OA; Khlebnikov AF; Novikov MS; Ivanov AY
    J Org Chem; 2016 Nov; 81(22):11210-11221. PubMed ID: 27726365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.
    Łukowska-Chojnacka E; Staniszewska M; Bondaryk M; Maurin JK; Bretner M
    Chirality; 2016 Apr; 28(4):347-54. PubMed ID: 26922853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically active antifungal azoles. IV. Synthesis and antifungal activity of (2R,3R)-3-azolyl-2-(substituted phenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanols.
    Tasaka A; Tamura N; Matsushita Y; Kitazaki T; Hayashi R; Okonogi K; Itoh K
    Chem Pharm Bull (Tokyo); 1995 Mar; 43(3):432-40. PubMed ID: 7774026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile lipase-catalyzed KR approach toward enantiomerically enriched homopropargyl alcohols.
    Borowiecki P; Dranka M
    Bioorg Chem; 2019 Dec; 93():102754. PubMed ID: 30765117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Absolute Configuration, Antibacterial, and Antifungal Activities of Novel Benzofuryl
    Tafelska-Kaczmarek A; Kołodziejska R; Kwit M; Stasiak B; Wypij M; Golińska P
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32937873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of optically active esters and alcohols from racemic alcohols by lipase-catalyzed stereoselective transesterification in non-aqueous reaction system.
    Nishio T; Kamimura M; Murata M; Terao Y; Achiwa K
    J Biochem; 1989 Apr; 105(4):510-2. PubMed ID: 2760012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.