These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23617239)

  • 1. An efficient algorithm to perform multiple testing in epistasis screening.
    Van Lishout F; Mahachie John JM; Gusareva ES; Urrea V; Cleynen I; Théâtre E; Charloteaux B; Calle ML; Wehenkel L; Van Steen K
    BMC Bioinformatics; 2013 Apr; 14():138. PubMed ID: 23617239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gammaMAXT: a fast multiple-testing correction algorithm.
    Lishout FV; Gadaleta F; Moore JH; Wehenkel L; Steen KV
    BioData Min; 2015; 8():36. PubMed ID: 26594243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling personal genomics with an explicit test of epistasis.
    Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits.
    Calle ML; Urrea V; Malats N; Van Steen K
    Bioinformatics; 2010 Sep; 26(17):2198-9. PubMed ID: 20595460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
    Kadarmideen HN; Carmelo VAO
    Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Exhaustive Scan Method for SNP Main Effects and SNP × SNP Interactions Over Highly Homozygous Genomes.
    Tsai SF; Tung CW; Tsai CA; Liao CT
    J Comput Biol; 2017 Dec; 24(12):1254-1264. PubMed ID: 29099245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction.
    Mahachie John JM; Cattaert T; Lishout FV; Gusareva ES; Steen KV
    PLoS One; 2012; 7(1):e29594. PubMed ID: 22242176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies.
    Emily M
    Stat Appl Genet Mol Biol; 2016 Apr; 15(2):151-71. PubMed ID: 26913459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Stage Testing for Epistasis: Screening and Verification.
    Pecanka J; Jonker MA
    Methods Mol Biol; 2021; 2212():69-92. PubMed ID: 33733351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Based Multifactor Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data.
    Mahachie John JM; Van Lishout F; Van Steen K
    Eur J Hum Genet; 2011 Jun; 19(6):696-703. PubMed ID: 21407267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions.
    Leem S; Park T
    BMC Genomics; 2017 Mar; 18(Suppl 2):115. PubMed ID: 28361694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEAM: efficient two-locus epistasis tests in human genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.