These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 23617239)
21. FastEpistasis: a high performance computing solution for quantitative trait epistasis. Schüpbach T; Xenarios I; Bergmann S; Kapur K Bioinformatics; 2010 Jun; 26(11):1468-9. PubMed ID: 20375113 [TBL] [Abstract][Full Text] [Related]
22. A novel approach to detect cumulative genetic effects and genetic interactions in Crohn's disease. Wang MH; Fiocchi C; Ripke S; Zhu X; Duerr RH; Achkar JP Inflamm Bowel Dis; 2013 Aug; 19(9):1799-808. PubMed ID: 23598818 [TBL] [Abstract][Full Text] [Related]
23. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions. Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965 [TBL] [Abstract][Full Text] [Related]
24. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm. Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573 [TBL] [Abstract][Full Text] [Related]
25. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146 [TBL] [Abstract][Full Text] [Related]
26. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Jing PJ; Shen HB Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719 [TBL] [Abstract][Full Text] [Related]
27. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing. Caylak G; Tastan O; Cicek AE J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775 [No Abstract] [Full Text] [Related]
28. A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Pattin KA; White BC; Barney N; Gui J; Nelson HH; Kelsey KT; Andrew AS; Karagas MR; Moore JH Genet Epidemiol; 2009 Jan; 33(1):87-94. PubMed ID: 18671250 [TBL] [Abstract][Full Text] [Related]
29. A whole-genome simulator capable of modeling high-order epistasis for complex disease. Yang W; Gu CC Genet Epidemiol; 2013 Nov; 37(7):686-94. PubMed ID: 24114848 [TBL] [Abstract][Full Text] [Related]
30. Gene-Gene Interactions Detection Using a Two-stage Model. Wang Z; Sul JH; Snir S; Lozano JA; Eskin E J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811 [TBL] [Abstract][Full Text] [Related]
31. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
32. PTPN2 gene variants are associated with susceptibility to both Crohn's disease and ulcerative colitis supporting a common genetic disease background. Glas J; Wagner J; Seiderer J; Olszak T; Wetzke M; Beigel F; Tillack C; Stallhofer J; Friedrich M; Steib C; Göke B; Ochsenkühn T; Karbalai N; Diegelmann J; Czamara D; Brand S PLoS One; 2012; 7(3):e33682. PubMed ID: 22457781 [TBL] [Abstract][Full Text] [Related]
33. Potpourri: An Epistasis Test Prioritization Algorithm via Diverse SNP Selection. Caylak G; Tastan O; Cicek AE J Comput Biol; 2021 Apr; 28(4):365-377. PubMed ID: 33275856 [No Abstract] [Full Text] [Related]
34. Travelling the world of gene-gene interactions. Steen KV Brief Bioinform; 2012 Jan; 13(1):1-19. PubMed ID: 21441561 [TBL] [Abstract][Full Text] [Related]
35. GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792 [TBL] [Abstract][Full Text] [Related]
36. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis. Gayán J; González-Pérez A; Bermudo F; Sáez ME; Royo JL; Quintas A; Galan JJ; Morón FJ; Ramirez-Lorca R; Real LM; Ruiz A BMC Genomics; 2008 Jul; 9():360. PubMed ID: 18667089 [TBL] [Abstract][Full Text] [Related]
37. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
38. A fast algorithm to optimize SNP prioritization for gene-gene and gene-environment interactions. Deng WQ; Paré G Genet Epidemiol; 2011 Nov; 35(7):729-38. PubMed ID: 21922538 [TBL] [Abstract][Full Text] [Related]
39. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model. Mao Y; London NR; Ma L; Dvorkin D; Da Y Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430 [TBL] [Abstract][Full Text] [Related]
40. A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Gui J; Moore JH; Kelsey KT; Marsit CJ; Karagas MR; Andrew AS Hum Genet; 2011 Jan; 129(1):101-10. PubMed ID: 20981448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]