These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23617279)

  • 1. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances.
    Zapata-Benabithe Z; Carrasco-Marín F; de Vicente J; Moreno-Castilla C
    Langmuir; 2013 May; 29(20):6166-73. PubMed ID: 23617279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating.
    Tao Y; Hattori Y; Matumoto A; Kanoh H; Kaneko K
    J Phys Chem B; 2005 Jan; 109(1):194-9. PubMed ID: 16851004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in tailoring resorcinol-formaldehyde organic and carbon gels.
    Elkhatat AM; Al-Muhtaseb SA
    Adv Mater; 2011 Jul; 23(26):2887-903. PubMed ID: 21608048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of texture and surface chemistry of carbon xerogels.
    Mahata N; Pereira MF; Suárez-García F; Martínez-Alonso A; Tascón JM; Figueiredo JL
    J Colloid Interface Sci; 2008 Aug; 324(1-2):150-5. PubMed ID: 18533175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous carbon gels: N-doped carbon xerogels from resorcinol and N-containing heterocyclic aldehydes.
    Kiciński W; Norek M; Jankiewicz BJ
    Langmuir; 2014 Dec; 30(47):14276-85. PubMed ID: 25380545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.
    Du SH; Wang LQ; Fu XT; Chen MM; Wang CY
    Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules.
    Fuertes AB; Valle-Vigón P; Sevilla M
    Chem Commun (Camb); 2012 Jun; 48(49):6124-6. PubMed ID: 22582187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication of carbon structures by pattern miniaturization in resorcinol-formaldehyde gel.
    Sharma CS; Verma A; Kulkarni MM; Upadhyay DK; Sharma A
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2193-7. PubMed ID: 20681561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels.
    Aucoin MG; Erhardt FA; Legge RL
    Biotechnol Bioeng; 2004 Mar; 85(6):647-55. PubMed ID: 14966806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Properties of Carbon Aerogel Electrodes: Dependence on Synthesis Temperature.
    Malkova AN; Sipyagina NA; Gozhikova IO; Dobrovolsky YA; Konev DV; Baranchikov AE; Ivanova OS; Ukshe AE; Lermontov SA
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31731434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a feasible and scalable production of bio-xerogels.
    Rey-Raap N; Szczurek A; Fierro V; Menéndez JA; Arenillas A; Celzard A
    J Colloid Interface Sci; 2015 Oct; 456():138-44. PubMed ID: 26119083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres.
    Liu J; Qiao SZ; Liu H; Chen J; Orpe A; Zhao D; Lu GQ
    Angew Chem Int Ed Engl; 2011 Jun; 50(26):5947-51. PubMed ID: 21630403
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor.
    Lu C; Huang YH; Hong JS; Wu YJ; Li J; Cheng JP
    J Colloid Interface Sci; 2018 Aug; 524():209-218. PubMed ID: 29655139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the boron precursor and drying method on surface properties and electrochemical behavior of boron-doped carbon gels.
    Zapata-Benabihe Z; Moreno-Castilla C; Carrasco-Marín F
    Langmuir; 2014 Feb; 30(6):1716-22. PubMed ID: 24460055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical interactions of surface-active agents with growing resorcinol-formaldehyde gels.
    Jirglová H; Maldonado-Hódar FJ
    Langmuir; 2010 Oct; 26(20):16103-9. PubMed ID: 20860392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Development of Fe
    Khamkure S; Gamero-Melo P; Garrido-Hoyos SE; Reyes-Rosas A; Pacheco-Catalán DE; López-Martínez AM
    Gels; 2023 Jul; 9(8):. PubMed ID: 37623073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and properties of phloroglucinol-phenol-formaldehyde carbon aerogels and xerogels.
    Jirglová H; Pérez-Cadenas AF; Maldonado-Hódar FJ
    Langmuir; 2009 Feb; 25(4):2461-6. PubMed ID: 19199717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical properties of an activated carbon xerogel monolith from resorcinol-formaldehyde for supercapacitor electrode applications.
    Huang M; Yoo SJ; Lee JS; Yoon TH
    RSC Adv; 2021 Oct; 11(53):33192-33201. PubMed ID: 35497528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths.
    Tokudome Y; Nakanishi K; Kanamori K; Fujita K; Akamatsu H; Hanada T
    J Colloid Interface Sci; 2009 Oct; 338(2):506-13. PubMed ID: 19646712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.