These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23617738)
1. Amplification-free detection of Cryptosporidium parvum nucleic acids with the use of DNA/RNA-directed gold nanoparticle assemblies. Weigum SE; Castellanos-Gonzalez A; White AC; Richards-Kortum R J Parasitol; 2013 Oct; 99(5):923-6. PubMed ID: 23617738 [TBL] [Abstract][Full Text] [Related]
2. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Hønsvall BK; Robertson LJ Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735 [TBL] [Abstract][Full Text] [Related]
3. Real-time PCR for the detection of Cryptosporidium parvum. Higgins JA; Fayer R; Trout JM; Xiao L; Lal AA; Kerby S; Jenkins MC J Microbiol Methods; 2001 Dec; 47(3):323-37. PubMed ID: 11714523 [TBL] [Abstract][Full Text] [Related]
4. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581 [TBL] [Abstract][Full Text] [Related]
5. Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA. Javier DJ; Castellanos-Gonzalez A; Weigum SE; White AC; Richards-Kortum R J Clin Microbiol; 2009 Dec; 47(12):4060-6. PubMed ID: 19828740 [TBL] [Abstract][Full Text] [Related]
6. First genetic identification of Cryptosporidium parvum subtype IIaA14G2R1in beef cattle in Brazil. Heckler RP; Borges DG; Bacha FB; Onizuka MK; Teruya Le; Neves JP; Leal CR; de Lemos RA; Meireles MV; Borges Fde A Prev Vet Med; 2015 Oct; 121(3-4):391-4. PubMed ID: 26342791 [TBL] [Abstract][Full Text] [Related]
7. CP2 gene as a useful viability marker for Cryptosporidium parvum. Lee SU; Joung M; Ahn MH; Huh S; Song H; Park WY; Yu JR Parasitol Res; 2008 Feb; 102(3):381-7. PubMed ID: 18060431 [TBL] [Abstract][Full Text] [Related]
8. Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices. Manore AJW; Harper SL; Aguilar B; Weese JS; Shapiro K J Microbiol Methods; 2019 Jan; 156():1-4. PubMed ID: 30468750 [TBL] [Abstract][Full Text] [Related]
9. Detection of Cryptosporidium parvum DNA in human feces by nested PCR. Balatbat AB; Jordan GW; Tang YJ; Silva J J Clin Microbiol; 1996 Jul; 34(7):1769-72. PubMed ID: 8784586 [TBL] [Abstract][Full Text] [Related]
10. Factors associated with shedding of Cryptosporidium parvum versus Cryptosporidium bovis among dairy cattle in New York State. Starkey SR; Zeigler PE; Wade SE; Schaaf SL; Mohammed HO J Am Vet Med Assoc; 2006 Nov; 229(10):1623-6. PubMed ID: 17107320 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of excretion and molecular characterization of Cryptosporidium isolates in pre-weaned French beef calves. Rieux A; Chartier C; Pors I; Paraud C Vet Parasitol; 2013 Jul; 195(1-2):169-72. PubMed ID: 23312870 [TBL] [Abstract][Full Text] [Related]
12. Prevalence of Cryptosporidium parvum in dairy calves and GP60 subtyping of diarrheic calves in central Argentina. Lombardelli JA; Tomazic ML; Schnittger L; Tiranti KI Parasitol Res; 2019 Jul; 118(7):2079-2086. PubMed ID: 31187226 [TBL] [Abstract][Full Text] [Related]
13. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178 [TBL] [Abstract][Full Text] [Related]
14. Comparative sensitivity of PCR primer sets for detection of Cryptosporidium parvum. Yu JR; Lee SU; Park WY Korean J Parasitol; 2009 Sep; 47(3):293-7. PubMed ID: 19724705 [TBL] [Abstract][Full Text] [Related]
15. A rapid method for producing highly purified Cryptosporidium parvum oocysts. O'Brien CN; Jenkins MC J Parasitol; 2007 Apr; 93(2):434-6. PubMed ID: 17539434 [TBL] [Abstract][Full Text] [Related]
16. Fecundity of Cryptosporidium parvum is correlated with intracellular levels of the viral symbiont CPV. Jenkins MC; Higgins J; Abrahante JE; Kniel KE; O'Brien C; Trout J; Lancto CA; Abrahamsen MS; Fayer R Int J Parasitol; 2008 Jul; 38(8-9):1051-5. PubMed ID: 18096164 [TBL] [Abstract][Full Text] [Related]
17. Seasonal variation in the prevalence and molecular epidemiology of Cryptosporidium infection in dairy cattle in the New York City Watershed. Szonyi B; Bordonaro R; Wade SE; Mohammed HO Parasitol Res; 2010 Jul; 107(2):317-25. PubMed ID: 20397026 [TBL] [Abstract][Full Text] [Related]
18. Utility of the Cryptosporidium oocyst wall protein (COWP) gene in a nested PCR approach for detection infection in cattle. Kato S; Lindergard G; Mohammed HO Vet Parasitol; 2003 Feb; 111(2-3):153-9. PubMed ID: 12531291 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum IId-subtype-family from human and cattle fecal samples. Yu F; Zhang K; Wang Y; Li D; Cui Z; Huang J; Zhang S; Li X; Zhang L Parasit Vectors; 2021 Apr; 14(1):208. PubMed ID: 33879230 [TBL] [Abstract][Full Text] [Related]
20. The identification of Cryptosporidium species and Cryptosporidium parvum directly from whole faeces by analysis of a multiplex PCR of the 18S rRNA gene and by PCR/RFLP of the Cryptosporidium outer wall protein (COWP) gene. Patel S; Pedraza-Díaz S; McLauchlin J Int J Parasitol; 1999 Aug; 29(8):1241-7. PubMed ID: 10576575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]