These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 2361784)

  • 21. Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners.
    Itoh H; Ohkuwa T
    Eur J Appl Physiol Occup Physiol; 1990; 60(4):271-6. PubMed ID: 2357982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximal-intensity intermittent exercise: effect of recovery duration.
    Balsom PD; Seger JY; Sjödin B; Ekblom B
    Int J Sports Med; 1992 Oct; 13(7):528-33. PubMed ID: 1459748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload.
    Skof B; Strojnik V
    Int J Sports Med; 2006 Mar; 27(3):220-5. PubMed ID: 16541378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human blood lactate and ammonia levels after supramaximal uphill and downhill running.
    Itoh H; Ohkuwa T; Yamazaki Y; Miyamura M
    Nagoya J Med Sci; 1996 Dec; 59(3-4):135-42. PubMed ID: 9212639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A field test for determining the speed obtained through anaerobic glycolysis in runners.
    Borsetto C; Ballarin E; Casoni I; Cellini M; Vitiello P; Conconi F
    Int J Sports Med; 1989 Oct; 10(5):339-45. PubMed ID: 2599721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol.
    Gondim FJ; Zoppi CC; Pereira-da-Silva L; de Macedo DV
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):375-80. PubMed ID: 17234441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Onset of blood lactate accumulation and marathon running performance.
    Sjödin B; Jacobs I
    Int J Sports Med; 1981 Feb; 2(1):23-6. PubMed ID: 7333732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endurance training in females: changes in beta-endorphin and ACTH.
    Heitkamp HC; Schulz H; Röcker K; Dickhuth HH
    Int J Sports Med; 1998 May; 19(4):260-4. PubMed ID: 9657366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of sprint training on human skeletal muscle purine nucleotide metabolism.
    Stathis CG; Febbraio MA; Carey MF; Snow RJ
    J Appl Physiol (1985); 1994 Apr; 76(4):1802-9. PubMed ID: 8045862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ammonia accumulation during highly intensive long-lasting cycling: individual observations.
    Brouns F; Beckers E; Wagenmakers AJ; Saris WH
    Int J Sports Med; 1990 May; 11 Suppl 2():S78-84. PubMed ID: 2361783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heart rate and blood lactate concentration during on-ice training in speed skating.
    Smith DJ; Roberts D
    Can J Sport Sci; 1990 Mar; 15(1):23-7. PubMed ID: 2331633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impressive anaerobic adaptations in elite karate athletes due to few intensive intermittent sessions added to regular karate training.
    Ravier G; Dugué B; Grappe F; Rouillon JD
    Scand J Med Sci Sports; 2009 Oct; 19(5):687-94. PubMed ID: 18694436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ammonia and lactate in the blood after short-term sprint exercise.
    Itoh H; Ohkuwa T
    Eur J Appl Physiol Occup Physiol; 1991; 62(1):22-5. PubMed ID: 2007391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex difference in plasma ammonia but not in muscle inosine monophosphate accumulation following sprint exercise in humans.
    Esbjörnsson-Liljedahl M; Jansson E
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):404-8. PubMed ID: 10208248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between plasma ammonia and blood lactate concentrations after maximal treadmill exercise in circumpubertal girls and boys.
    Nazar K; Dobrzyński B; Lewicki R
    Eur J Appl Physiol Occup Physiol; 1992; 65(3):246-50. PubMed ID: 1396654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of the literature on the application of blood ammonia measurement in sports science.
    Yuan Y; Chan KM
    Res Q Exerc Sport; 2000 Jun; 71(2):145-51. PubMed ID: 10925811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperammonaemia in relation to high-intensity exercise duration in man.
    Sewell DA; Gleeson M; Blannin AK
    Eur J Appl Physiol Occup Physiol; 1994; 69(4):350-4. PubMed ID: 7851372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined Analysis of Blood Ammonia and Lactate Levels as a Practical Tool to Assess the Metabolic Response to Training Sessions in Male and Female Sprinters.
    Kantanista A; Kusy K; Pospieszna B; Korman P; Wieliński D; Zieliński J
    J Strength Cond Res; 2021 Sep; 35(9):2591-2598. PubMed ID: 31268986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The purine nucleotide cycle revisited [corrected].
    Lowenstein JM
    Int J Sports Med; 1990 May; 11 Suppl 2():S37-46. PubMed ID: 2193892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.