These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 23617886)
1. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function. Hall AJ; Minchin PE Plant Cell Environ; 2013 Dec; 36(12):2150-62. PubMed ID: 23617886 [TBL] [Abstract][Full Text] [Related]
2. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. Hölttä T; Mencuccini M; Nikinmaa E J Theor Biol; 2009 Jul; 259(2):325-37. PubMed ID: 19361530 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Nikinmaa E; Sievänen R; Hölttä T Ann Bot; 2014 Sep; 114(4):653-66. PubMed ID: 24854169 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic modelling of coupled phloem/xylem transport for L-systems: combining analytical and computational methods. Seleznyova AN; Hanan J Ann Bot; 2018 Apr; 121(5):991-1003. PubMed ID: 29415123 [TBL] [Abstract][Full Text] [Related]
5. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Sevanto S; Hölttä T; Holbrook NM Plant Cell Environ; 2011 Apr; 34(4):690-703. PubMed ID: 21241327 [TBL] [Abstract][Full Text] [Related]
6. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube. Henton SM; Greaves AJ; Piller GJ; Minchin PE J Exp Bot; 2002 Jun; 53(373):1411-9. PubMed ID: 12021288 [TBL] [Abstract][Full Text] [Related]
7. Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. Daudet FA; Lacointe A; Gaudillère JP; Cruiziat P J Theor Biol; 2002 Feb; 214(3):481-98. PubMed ID: 11846604 [TBL] [Abstract][Full Text] [Related]
8. Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia. Tixier A; Sperling O; Orozco J; Lampinen B; Amico Roxas A; Saa S; Earles JM; Zwieniecki MA Planta; 2017 Sep; 246(3):495-508. PubMed ID: 28488188 [TBL] [Abstract][Full Text] [Related]
9. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. Pang Y; Zhang J; Cao J; Yin SY; He XQ; Cui KM J Exp Bot; 2008; 59(6):1341-51. PubMed ID: 18375933 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic analysis of the interaction of the xylem water and phloem sugar solution and its significance for the cohesion theory. Lampinen MJ; Noponen T J Theor Biol; 2003 Oct; 224(3):285-98. PubMed ID: 12941587 [TBL] [Abstract][Full Text] [Related]
11. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. Pompon J; Quiring D; Goyer C; Giordanengo P; Pelletier Y J Insect Physiol; 2011 Sep; 57(9):1317-22. PubMed ID: 21726563 [TBL] [Abstract][Full Text] [Related]
12. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants. Hammel HT; Schlegel WM Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460 [TBL] [Abstract][Full Text] [Related]
13. Hydraulic functioning of tree stems--fusing ray anatomy, radial transfer and capacitance. Pfautsch S; Hölttä T; Mencuccini M Tree Physiol; 2015 Jul; 35(7):706-22. PubMed ID: 26163488 [TBL] [Abstract][Full Text] [Related]
14. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium. Payvandi S; Daly KR; Zygalakis KC; Roose T Bull Math Biol; 2014 Nov; 76(11):2834-65. PubMed ID: 25348061 [TBL] [Abstract][Full Text] [Related]
15. A Mechanistic Model to Predict Distribution of Carbon Among Multiple Sinks. Lacointe A; Minchin PEH Methods Mol Biol; 2019; 2014():371-386. PubMed ID: 31197809 [TBL] [Abstract][Full Text] [Related]
16. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size. Helfter C; Shephard JD; Martinez-Vilalta J; Mencuccini M; Hand DP Tree Physiol; 2007 Feb; 27(2):169-79. PubMed ID: 17241960 [TBL] [Abstract][Full Text] [Related]
17. Xylem functioning, dysfunction and repair: a physical perspective and implications for phloem transport. Konrad W; Katul G; Roth-Nebelsick A; Jensen KH Tree Physiol; 2019 Feb; 39(2):243-261. PubMed ID: 30299503 [TBL] [Abstract][Full Text] [Related]
18. Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics. Sellier D; Mammeri Y Tree Physiol; 2019 Feb; 39(2):300-311. PubMed ID: 30753675 [TBL] [Abstract][Full Text] [Related]
19. Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study. Windt CW; Gerkema E; Van As H Plant Physiol; 2009 Oct; 151(2):830-42. PubMed ID: 19710234 [TBL] [Abstract][Full Text] [Related]
20. Refilling of embolised conduits as a consequence of 'Münch water' circulation. Hölttä T; Vesala T; Perämäki M; Nikinmaa E Funct Plant Biol; 2006 Oct; 33(10):949-959. PubMed ID: 32689305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]