These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23617917)

  • 1. Female promiscuity is positively associated with neutral and selected genetic diversity in passerine birds.
    Gohli J; Anmarkrud JA; Johnsen A; Kleven O; Borge T; Lifjeld JT
    Evolution; 2013 May; 67(5):1406-19. PubMed ID: 23617917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.
    Lifjeld JT; Gohli J; Johnsen A
    Evolution; 2013 Oct; 67(10):3073-4. PubMed ID: 24094357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on Gohli et al. (2013): "Does promiscuity explain differences in levels of genetic diversity across passerine birds?".
    Spurgin LG
    Evolution; 2013 Oct; 67(10):3071-2. PubMed ID: 24094356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae).
    Miller HC; Lambert DM
    Mol Ecol; 2004 Dec; 13(12):3709-21. PubMed ID: 15548285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extra-pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean.
    Rekdal SL; Anmarkrud JA; Lifjeld JT; Johnsen A
    Mol Ecol; 2019 Dec; 28(23):5133-5144. PubMed ID: 31614034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds.
    Griggio M; Biard C; Penn DJ; Hoi H
    BMC Evol Biol; 2011 Feb; 11():44. PubMed ID: 21320306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mate choice for nonadditive genetic benefits and the maintenance of genetic diversity in song sparrows.
    Neff BD; Pitcher TE
    J Evol Biol; 2009 Feb; 22(2):424-9. PubMed ID: 19032502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
    Neff BD; Pitcher TE
    Mol Ecol; 2005 Jan; 14(1):19-38. PubMed ID: 15643948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of highly variable immunity genes across a passerine bird radiation.
    O'Connor EA; Strandh M; Hasselquist D; Nilsson JÅ; Westerdahl H
    Mol Ecol; 2016 Feb; 25(4):977-89. PubMed ID: 26757248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda.
    Chen YY; Zhang YY; Zhang HM; Ge YF; Wan QH; Fang SG
    J Exp Zool B Mol Dev Evol; 2010 May; 314(3):208-23. PubMed ID: 19950128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very high MHC Class IIB diversity without spatial differentiation in the mediterranean population of greater Flamingos.
    Gillingham MA; Béchet A; Courtiol A; Rendón-Martos M; Amat JA; Samraoui B; Onmuş O; Sommer S; Cézilly F
    BMC Evol Biol; 2017 Feb; 17(1):56. PubMed ID: 28219340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus.
    Knafler GJ; Clark JA; Boersma PD; Bouzat JL
    J Hered; 2012; 103(6):759-68. PubMed ID: 22952272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putative causes and consequences of MHC variation within and between locally adapted stickleback demes.
    McCairns RJ; Bourget S; Bernatchez L
    Mol Ecol; 2011 Feb; 20(3):486-502. PubMed ID: 21134013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata).
    Fraser BA; Ramnarine IW; Neff BD
    Evolution; 2010 Jul; 64(7):2086-96. PubMed ID: 20148955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection.
    Agudo R; Alcaide M; Rico C; Lemus JA; Blanco G; Hiraldo F; Donázar JA
    Mol Ecol; 2011 Jun; 20(11):2329-40. PubMed ID: 21535276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus.
    Biedrzycka A; Radwan J
    Mol Ecol; 2008 Nov; 17(22):4801-11. PubMed ID: 19140973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two patterns of variation among MHC class I loci in Tuatara (Sphenodon punctatus).
    Miller HC; Andrews-Cookson M; Daugherty CH
    J Hered; 2007; 98(7):666-77. PubMed ID: 18032462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis).
    Jones MR; Cheviron ZA; Carling MD
    Immunogenetics; 2014 Dec; 66(12):693-704. PubMed ID: 25186067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Little effect of extrapair paternity on the opportunity for sexual selection in Savannah sparrows (Passerculus sandwichensis).
    Freeman-Gallant CR; Wheelwright NT; Meiklejohn KE; States SL; Sollecito SV
    Evolution; 2005 Feb; 59(2):422-30. PubMed ID: 15807426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations.
    Brouwer L; Barr I; van de Pol M; Burke T; Komdeur J; Richardson DS
    Mol Ecol; 2010 Aug; 19(16):3444-55. PubMed ID: 20670363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.