These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 23618005)
1. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005 [TBL] [Abstract][Full Text] [Related]
2. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. Stehlé J; Voirin N; Barrat A; Cattuto C; Colizza V; Isella L; Régis C; Pinton JF; Khanafer N; Van den Broeck W; Vanhems P BMC Med; 2011 Jul; 9():87. PubMed ID: 21771290 [TBL] [Abstract][Full Text] [Related]
3. Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data-driven simulations of infectious diseases. Barrat A; Cattuto C; Tozzi AE; Vanhems P; Voirin N Clin Microbiol Infect; 2014 Jan; 20(1):10-6. PubMed ID: 24267942 [TBL] [Abstract][Full Text] [Related]
4. Information content of contact-pattern representations and predictability of epidemic outbreaks. Holme P Sci Rep; 2015 Sep; 5():14462. PubMed ID: 26403504 [TBL] [Abstract][Full Text] [Related]
5. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? Blower S; Go MH BMC Med; 2011 Jul; 9():88. PubMed ID: 21771292 [TBL] [Abstract][Full Text] [Related]
6. Estimating contact patterns relevant to the spread of infectious diseases in Russia. Ajelli M; Litvinova M J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415 [TBL] [Abstract][Full Text] [Related]
7. Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks. Duncan AJ; Gunn GJ; Umstatter C; Humphry RW Theor Popul Biol; 2014 Dec; 98():11-8. PubMed ID: 25220357 [TBL] [Abstract][Full Text] [Related]
8. Detecting and quantifying heterogeneity in susceptibility using contact tracing data. Tuschhoff BM; Kennedy DA PLoS Comput Biol; 2024 Jul; 20(7):e1012310. PubMed ID: 39074159 [TBL] [Abstract][Full Text] [Related]
9. Infectious disease control using contact tracing in random and scale-free networks. Kiss IZ; Green DM; Kao RR J R Soc Interface; 2006 Feb; 3(6):55-62. PubMed ID: 16849217 [TBL] [Abstract][Full Text] [Related]
10. Compensating for population sampling in simulations of epidemic spread on temporal contact networks. Génois M; Vestergaard CL; Cattuto C; Barrat A Nat Commun; 2015 Nov; 6():8860. PubMed ID: 26563418 [TBL] [Abstract][Full Text] [Related]
11. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. Vanhems P; Barrat A; Cattuto C; Pinton JF; Khanafer N; Régis C; Kim BA; Comte B; Voirin N PLoS One; 2013; 8(9):e73970. PubMed ID: 24040129 [TBL] [Abstract][Full Text] [Related]
12. High-resolution epidemic simulation using within-host infection and contact data. Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958 [TBL] [Abstract][Full Text] [Related]
13. The impact of contact patterns on epidemic dynamics. Yin Q; Shi T; Dong C; Yan Z PLoS One; 2017; 12(3):e0173411. PubMed ID: 28291800 [TBL] [Abstract][Full Text] [Related]
14. Birth and death of links control disease spreading in empirical contact networks. Holme P; Liljeros F Sci Rep; 2014 May; 4():4999. PubMed ID: 24851942 [TBL] [Abstract][Full Text] [Related]
15. Impact of contact data resolution on the evaluation of interventions in mathematical models of infectious diseases. Contreras DA; Colosi E; Bassignana G; Colizza V; Barrat A J R Soc Interface; 2022 Jun; 19(191):20220164. PubMed ID: 35730172 [TBL] [Abstract][Full Text] [Related]
16. The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing. Kiss IZ; Green DM; Kao RR J R Soc Interface; 2008 Jul; 5(24):791-9. PubMed ID: 18055417 [TBL] [Abstract][Full Text] [Related]
17. Contact patterns among high school students. Fournet J; Barrat A PLoS One; 2014; 9(9):e107878. PubMed ID: 25226026 [TBL] [Abstract][Full Text] [Related]
18. sispread: A software to simulate infectious diseases spreading on contact networks. Alvarez FP; Crépey P; Barthélemy M; Valleron AJ Methods Inf Med; 2007; 46(1):19-26. PubMed ID: 17224976 [TBL] [Abstract][Full Text] [Related]
19. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network. Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032 [TBL] [Abstract][Full Text] [Related]
20. An algorithm to build synthetic temporal contact networks based on close-proximity interactions data. Duval A; Leclerc QJ; Guillemot D; Temime L; Opatowski L PLoS Comput Biol; 2024 Jun; 20(6):e1012227. PubMed ID: 38870216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]