BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23618232)

  • 1. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery.
    Minimol PF; Paul W; Sharma CP
    Carbohydr Polym; 2013 Jun; 95(1):1-8. PubMed ID: 23618232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel oral colon-targeting drug delivery system based on resistant starch acetate.
    Chen L; Pu H; Li X; Yu L
    J Control Release; 2011 Nov; 152 Suppl 1():e51-2. PubMed ID: 22195921
    [No Abstract]   [Full Text] [Related]  

  • 3. Surface engineering of silica nanoparticles for oral insulin delivery: characterization and cell toxicity studies.
    Andreani T; Kiill CP; de Souza AL; Fangueiro JF; Fernandes L; Doktorovová S; Santos DL; Garcia ML; Gremião MP; Souto EB; Silva AM
    Colloids Surf B Biointerfaces; 2014 Nov; 123():916-23. PubMed ID: 25466464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery.
    Yin L; Ding J; He C; Cui L; Tang C; Yin C
    Biomaterials; 2009 Oct; 30(29):5691-700. PubMed ID: 19615735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery.
    Amin MK; Boateng JS
    Mar Drugs; 2022 Feb; 20(3):. PubMed ID: 35323455
    [No Abstract]   [Full Text] [Related]  

  • 7. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.
    Giovino C; Ayensu I; Tetteh J; Boateng JS
    Int J Pharm; 2012 May; 428(1-2):143-51. PubMed ID: 22405987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles made from novel starch derivatives for transdermal drug delivery.
    Santander-Ortega MJ; Stauner T; Loretz B; Ortega-Vinuesa JL; Bastos-González D; Wenz G; Schaefer UF; Lehr CM
    J Control Release; 2010 Jan; 141(1):85-92. PubMed ID: 19699771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrophobic starch polymer for nanoparticle-mediated delivery of docetaxel.
    Dandekar P; Jain R; Stauner T; Loretz B; Koch M; Wenz G; Lehr CM
    Macromol Biosci; 2012 Feb; 12(2):184-94. PubMed ID: 22127828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.
    Situ W; Li X; Liu J; Chen L
    J Agric Food Chem; 2015 Apr; 63(16):4138-47. PubMed ID: 25865827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery.
    Endres TK; Beck-Broichsitter M; Samsonova O; Renette T; Kissel TH
    Biomaterials; 2011 Oct; 32(30):7721-31. PubMed ID: 21782238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles.
    Zhang N; Li J; Jiang W; Ren C; Li J; Xin J; Li K
    Int J Pharm; 2010 Jun; 393(1-2):212-8. PubMed ID: 20394813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin.
    Pardakhty A; Varshosaz J; Rouholamini A
    Int J Pharm; 2007 Jan; 328(2):130-41. PubMed ID: 16997517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors.
    Jiang X; Sha X; Xin H; Chen L; Gao X; Wang X; Law K; Gu J; Chen Y; Jiang Y; Ren X; Ren Q; Fang X
    Biomaterials; 2011 Dec; 32(35):9457-69. PubMed ID: 21911250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of bioadhesive potential and intestinal transport of pegylated poly(anhydride) nanoparticles.
    Yoncheva K; Guembe L; Campanero MA; Irache JM
    Int J Pharm; 2007 Apr; 334(1-2):156-65. PubMed ID: 17118588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ligand conjugated nanoparticles for oral insulin delivery.
    Liu C; Shan W; Liu M; Zhu X; Xu J; Xu Y; Huang Y
    Drug Deliv; 2016 Jul; 23(6):2015-25. PubMed ID: 26203690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility.
    Kumar S; Alnasif N; Fleige E; Kurniasih I; Kral V; Haase A; Luch A; Weindl G; Haag R; Schäfer-Korting M; Hedtrich S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):625-34. PubMed ID: 25445303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release.
    Shu S; Zhang X; Teng D; Wang Z; Li C
    Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility, cellular uptake and biodistribution of the polymeric amphiphilic nanoparticles as oral drug carriers.
    Liu Y; Kong M; Feng C; Yang KK; Li Y; Su J; Cheng XJ; Park HJ; Chen XG
    Colloids Surf B Biointerfaces; 2013 Mar; 103():345-53. PubMed ID: 23247264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.