BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23618289)

  • 1. CTMP-based cellulose fibers modified with core-shell latex for reinforcing biocomposites.
    Pan Y; Xiao H; Zhao Y; Wang Z
    Carbohydr Polym; 2013 Jun; 95(1):428-33. PubMed ID: 23618289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation.
    Pan Y; Xiao H; Cai P; Colpitts M
    Carbohydr Polym; 2016 Jan; 135():94-100. PubMed ID: 26453856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter.
    Lu Y; Weng L; Cao X
    Macromol Biosci; 2005 Nov; 5(11):1101-7. PubMed ID: 16245266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic.
    Bhardwaj R; Mohanty AK; Drzal LT; Pourboghrat F; Misra M
    Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste.
    Yao ZT; Chen T; Li HY; Xia MS; Ye Y; Zheng H
    J Hazard Mater; 2013 Nov; 262():212-7. PubMed ID: 24036146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites.
    Zainuddin SY; Ahmad I; Kargarzadeh H; Abdullah I; Dufresne A
    Carbohydr Polym; 2013 Feb; 92(2):2299-305. PubMed ID: 23399291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A plant fiber reinforced polymer composite prepared by a twin-screw extruder.
    Sui G; Fuqua MA; Ulven CA; Zhong WH
    Bioresour Technol; 2009 Feb; 100(3):1246-51. PubMed ID: 18842402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocomposites based on Argan nut shell and a polymer matrix: Effect of filler content and coupling agent.
    Essabir H; Bensalah MO; Rodrigue D; Bouhfid R; Qaiss Ael K
    Carbohydr Polym; 2016 Jun; 143():70-83. PubMed ID: 27083345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics.
    Ljungberg N; Bonini C; Bortolussi F; Boisson C; Heux L; Cavaillé JY
    Biomacromolecules; 2005; 6(5):2732-9. PubMed ID: 16153113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement.
    Li S; Xiao M; Zheng A; Xiao H
    Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica hybrid particles with nanometre polymer shells and their influence on the toughening of polypropylene.
    Zheng JZ; Zhou XP; Xie XL; Mai YW
    Nanoscale; 2010 Oct; 2(10):2269-74. PubMed ID: 20730152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Cellulose-Basalt Polypropylene Composites with Enhanced Compatibility: The Role of Coupling Agent.
    Sergi C; Sbardella F; Lilli M; Tirillò J; Calzolari A; Sarasini F
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32987669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals.
    Doineau E; Coqueugniot G; Pucci MF; Caro AS; Cathala B; Bénézet JC; Bras J; Le Moigne N
    Carbohydr Polym; 2021 Feb; 254():117403. PubMed ID: 33357891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The static strength and modulus of fiber reinforced denture base polymer.
    Narva KK; Lassila LV; Vallittu PK
    Dent Mater; 2005 May; 21(5):421-8. PubMed ID: 15826698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.
    Tajeddin B; Rahman RA; Abdulah LC
    Int J Biol Macromol; 2010 Aug; 47(2):292-7. PubMed ID: 20417660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight composites from long wheat straw and polypropylene web.
    Zou Y; Huda S; Yang Y
    Bioresour Technol; 2010 Mar; 101(6):2026-33. PubMed ID: 19939672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.
    Vilaseca F; Valadez-Gonzalez A; Herrera-Franco PJ; Pèlach MA; López JP; Mutjé P
    Bioresour Technol; 2010 Jan; 101(1):387-95. PubMed ID: 19700312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry.
    Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O
    Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.