BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 236183)

  • 1. Flavin-nicotinamide biscoenzymes: models for the interaction between NADH (NADPH) and flavin in flavoenzymes. Reaction rates and physicochemical properties of intermediate species.
    Blankenhorn G
    Eur J Biochem; 1975 Jan; 50(2):351-6. PubMed ID: 236183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular complexes between N-methyl-1,4-dihydronicotinamide and flavines. The influence of steric and electronic factors on complex formation and the rate of flavine-dependent dihydronicotinamide dehydrogenation.
    Blankenhorn G
    Biochemistry; 1975 Jul; 14(14):3172-6. PubMed ID: 238584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism.
    Blankenhorn G
    Eur J Biochem; 1976 Aug; 67(1):67-80. PubMed ID: 134889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions.
    Porter DJ; Bright HJ; Voet D
    Nature; 1977 Sep; 269(5625):213-7. PubMed ID: 145544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of phenols with old yellow enzyme. Physical evidence for charge-transfer complexes.
    Abramovitz AS; Massey V
    J Biol Chem; 1976 Sep; 251(17):5327-36. PubMed ID: 8461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function correlations of the reaction of reduced nicotinamide analogues with p-hydroxybenzoate hydroxylase substituted with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Gatti D; Ballou DP; Massey V
    Biochemistry; 1999 Dec; 38(50):16636-47. PubMed ID: 10600126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerning 1e- transfer in reduction by dihydronicotinamide: reaction of oxidized flavin and flavin radical with N-benzyl-1,5-dihydronicotinamide.
    Powell MF; Wong WH; Bruice TC
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4604-8. PubMed ID: 6214784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some novel flavin-nicotinamide biscoenzymes and their reactivities.
    Proffitt RT; Ingraham LL; Blankenhorn G
    Biochim Biophys Acta; 1974 Oct; 362(3):534-48. PubMed ID: 4278277
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluorescence and optical characteristics of reduced flavines and flavoproteins.
    Ghisla S; Massey V; Lhoste JM; Mayhew SG
    Biochemistry; 1974 Jan; 13(3):589-97. PubMed ID: 4149231
    [No Abstract]   [Full Text] [Related]  

  • 11. Geometric relationship between the nicotinamide and isoalloxazine rings in NADPH-cytochrome P-450 oxidoreductase: implications for the classification of evolutionarily and functionally related flavoproteins.
    Sem DS; Kasper CB
    Biochemistry; 1992 Apr; 31(13):3391-8. PubMed ID: 1532512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The present status of flavin and flavocoenzyme chemistry.
    Hemmerich P
    Fortschr Chem Org Naturst; 1976; 33():451-527. PubMed ID: 11156
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction of reduced flavins and flavoproteins with diphenyliodonium chloride.
    Chakraborty S; Massey V
    J Biol Chem; 2002 Nov; 277(44):41507-16. PubMed ID: 12186866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.
    Haynes RK; Chan WC; Wong HN; Li KY; Wu WK; Fan KM; Sung HH; Williams ID; Prosperi D; Melato S; Coghi P; Monti D
    ChemMedChem; 2010 Aug; 5(8):1282-99. PubMed ID: 20629071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of environment on flavin reactivity in morphinone reductase: analysis of enzymes displaying differential charge near the N-1 atom and C-2 carbonyl region of the active-site flavin.
    Craig DH; Barna T; Moody PC; Bruce NC; Chapman SK; Munro AW; Scrutton NS
    Biochem J; 2001 Oct; 359(Pt 2):315-23. PubMed ID: 11583577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site probes of flavoproteins.
    Massey V; Hemmerich P
    Biochem Soc Trans; 1980 Jun; 8(3):246-57. PubMed ID: 7399046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.