These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 236183)

  • 21. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and properties of 5-deazaflavin radicals as compared to natural flavosemiquinones.
    Goldberg M; Pecht I; Kramer HE; Traber R; Hemmerich P
    Biochim Biophys Acta; 1981 Apr; 673(4):570-93. PubMed ID: 6894393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalently bound Flavin Coenzymes.
    Kearney EB; Kenny WC
    Horiz Biochem Biophys; 1974; 1():62-96. PubMed ID: 4619616
    [No Abstract]   [Full Text] [Related]  

  • 24. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism.
    Marcinkeviciene J; Tinney LM; Wang KH; Rogers MJ; Copeland RA
    Biochemistry; 1999 Oct; 38(40):13129-37. PubMed ID: 10529184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis.
    Craig DH; Moody PC; Bruce NC; Scrutton NS
    Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of ozone with nicotinamide and its derivatives.
    Mudd JB; Leh F; McManus TT
    Arch Biochem Biophys; 1974 Apr; 161(2):408-19. PubMed ID: 4151725
    [No Abstract]   [Full Text] [Related]  

  • 29. Tautomeric rearrangement of a dihydroflavin bound to monomeric sarcosine oxidase or N-methyltryptophan oxidase.
    Khanna P; Jorns MS
    Biochemistry; 2003 Feb; 42(4):864-9. PubMed ID: 12549903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.
    Wagner MA; Trickey P; Chen ZW; Mathews FS; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8813-24. PubMed ID: 10913292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 6-Thiocyanatoflavins and 6-mercaptoflavins as active-site probes of flavoproteins.
    Massey V; Ghisla S; Yagi K
    Biochemistry; 1986 Dec; 25(24):8103-12. PubMed ID: 2879564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADH model systems functionalized with Zn(II)-cyclen as flavin binding site-structure dependence of the redox reaction within reversible aggregates.
    Reichenbach-Klinke R; Kruppa M; König B
    J Am Chem Soc; 2002 Nov; 124(44):12999-3007. PubMed ID: 12405826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria.
    Kunz WS; Kunz W
    Biochim Biophys Acta; 1985 Sep; 841(3):237-46. PubMed ID: 4027266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of C4a- and N5-covalent adducts in the flavin oxidation of carbanions.
    Chan TW; Bruice TC
    Biochemistry; 1978 Oct; 17(22):4784-93. PubMed ID: 728387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and some properties of 6-substituted flavins as active site probes for flavin enzymes.
    Ghisla S; Massey V; Yagi K
    Biochemistry; 1986 Jun; 25(11):3282-9. PubMed ID: 3730361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs.
    Barber MJ; Trimboli AJ; Nomikos S; Smith ET
    Arch Biochem Biophys; 1997 Sep; 345(1):88-96. PubMed ID: 9281315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.