These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 23618315)
41. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Song W; Zhang J; Guo J; Zhang J; Ding F; Li L; Sun Z Toxicol Lett; 2010 Dec; 199(3):389-97. PubMed ID: 20934491 [TBL] [Abstract][Full Text] [Related]
42. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409 [TBL] [Abstract][Full Text] [Related]
43. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. Jones N; Ray B; Ranjit KT; Manna AC FEMS Microbiol Lett; 2008 Feb; 279(1):71-6. PubMed ID: 18081843 [TBL] [Abstract][Full Text] [Related]
45. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Dutta RK; Nenavathu BP; Gangishetty MK; Reddy AV Colloids Surf B Biointerfaces; 2012 Jun; 94():143-50. PubMed ID: 22348987 [TBL] [Abstract][Full Text] [Related]
46. Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation. Inkyo M; Tahara T; Iwaki T; Iskandar F; Hogan CJ; Okuyama K J Colloid Interface Sci; 2006 Dec; 304(2):535-40. PubMed ID: 17022990 [TBL] [Abstract][Full Text] [Related]
47. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Zhang H; Smith JA; Oyanedel-Craver V Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660 [TBL] [Abstract][Full Text] [Related]
48. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Das D; Nath BC; Phukon P; Kalita A; Dolui SK Colloids Surf B Biointerfaces; 2013 Nov; 111():556-60. PubMed ID: 23891844 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sui M; Zhang L; Sheng L; Huang S; She L Sci Total Environ; 2013 May; 452-453():148-54. PubMed ID: 23500408 [TBL] [Abstract][Full Text] [Related]
50. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Lv J; Zhang S; Luo L; Han W; Zhang J; Yang K; Christie P Environ Sci Technol; 2012 Jul; 46(13):7215-21. PubMed ID: 22651907 [TBL] [Abstract][Full Text] [Related]
51. Zn2+ release from zinc and zinc oxide particles in simulated uterine solution. Yang Z; Xie C Colloids Surf B Biointerfaces; 2006 Feb; 47(2):140-5. PubMed ID: 16423513 [TBL] [Abstract][Full Text] [Related]
52. Controllable synthesis of ZnO with various morphologies by hydrothermal method. Li X; Zhang F; Ma C; Deng Y; Wang Z; Elingarami S; He N J Nanosci Nanotechnol; 2012 Mar; 12(3):2028-36. PubMed ID: 22755016 [TBL] [Abstract][Full Text] [Related]
53. Zinc oxide nanoparticles and monocytes: impact of size, charge and solubility on activation status. Prach M; Stone V; Proudfoot L Toxicol Appl Pharmacol; 2013 Jan; 266(1):19-26. PubMed ID: 23142470 [TBL] [Abstract][Full Text] [Related]
54. Bactericidal mechanisms of Ag₂O/TNBs under both dark and light conditions. Jin Y; Dai Z; Liu F; Kim H; Tong M; Hou Y Water Res; 2013 Apr; 47(5):1837-47. PubMed ID: 23360730 [TBL] [Abstract][Full Text] [Related]
55. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Adams LK; Lyon DY; Alvarez PJ Water Res; 2006 Nov; 40(19):3527-32. PubMed ID: 17011015 [TBL] [Abstract][Full Text] [Related]
56. Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection. Karunakaran C; Narayanan S; Gomathisankar P J Hazard Mater; 2010 Sep; 181(1-3):708-15. PubMed ID: 20542635 [TBL] [Abstract][Full Text] [Related]
57. Comparison of the cytotoxic responses of Escherichia coli (E. coli) AMC 198 to different fullerene suspensions (nC60). Dai J; Wang C; Shang C; Graham N; Chen GH Chemosphere; 2012 Apr; 87(4):362-8. PubMed ID: 22230727 [TBL] [Abstract][Full Text] [Related]
58. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Fang T; Watson JL; Goodman J; Dimkpa CO; Martineau N; Das S; McLean JE; Britt DW; Anderson AJ Microbiol Res; 2013 Feb; 168(2):91-8. PubMed ID: 23083747 [TBL] [Abstract][Full Text] [Related]
59. Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism. Lv Y; Xiao W; Li W; Xue J; Ding J Nanotechnology; 2013 May; 24(17):175702. PubMed ID: 23571655 [TBL] [Abstract][Full Text] [Related]
60. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Li M; Zhu L; Lin D Environ Sci Technol; 2011 Mar; 45(5):1977-83. PubMed ID: 21280647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]