These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23618711)

  • 1. Phase and amplitude patterns in DySEM mappings of vibrating microstructures.
    Schröter MA; Sturm H; Holschneider M
    Nanotechnology; 2013 May; 24(21):215701. PubMed ID: 23618711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stroboscopic white-light interferometry of vibrating microstructures.
    Shavrin I; Lipiäinen L; Kokkonen K; Novotny S; Kaivola M; Ludvigsen H
    Opt Express; 2013 Jul; 21(14):16901-7. PubMed ID: 23938538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer.
    Lee B; Somnath S; King WP
    Nanotechnology; 2013 Apr; 24(13):135501. PubMed ID: 23478235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative mechanisms for precision assembly and actuation of arrays of nanowire oscillators.
    Kim K; Zhu FQ; Fan D
    ACS Nano; 2013 Apr; 7(4):3476-83. PubMed ID: 23484802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS-based high speed scanning probe microscopy.
    Disseldorp EC; Tabak FC; Katan AJ; Hesselberth MB; Oosterkamp TH; Frenken JW; van Spengen WM
    Rev Sci Instrum; 2010 Apr; 81(4):043702. PubMed ID: 20441340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-sensitive narrowband heterodyne holography.
    Bruno F; Laudereau JB; Lesaffre M; Verrier N; Atlan M
    Appl Opt; 2014 Mar; 53(7):1252-7. PubMed ID: 24663351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology.
    Xiong X; Guo S; Xu Z; Sheng P; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061604. PubMed ID: 20365178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe.
    Gramse G; Gomila G; Fumagalli L
    Nanotechnology; 2012 May; 23(20):205703. PubMed ID: 22543516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback.
    Roels J; Maes B; Bogaerts W; Baets R; Van Thourhout D
    Opt Express; 2011 Jul; 19(14):13081-8. PubMed ID: 21747460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano-like resonance in an optically driven atomic force microscope cantilever.
    Kadri S; Fujiwara H; Sasaki K
    Opt Express; 2011 Jan; 19(3):2317-24. PubMed ID: 21369050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging.
    Enriquez-Flores CI; Gervacio-Arciniega JJ; Cruz-Valeriano E; de Urquijo-Ventura P; Gutierrez-Salazar BJ; Espinoza-Beltran FJ
    Nanotechnology; 2012 Dec; 23(49):495705. PubMed ID: 23149480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization.
    Eslami S; Zareian R; Jalili N
    Rev Sci Instrum; 2012 Oct; 83(10):105002. PubMed ID: 23126795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces.
    Olsson AL; Quevedo IR; He D; Basnet M; Tufenkji N
    ACS Nano; 2013 Sep; 7(9):7833-43. PubMed ID: 23964846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.
    Tzur M; Desiatov B; Goykhman I; Grajower M; Levy U
    Opt Express; 2013 Dec; 21(24):29195-204. PubMed ID: 24514471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip.
    Minary-Jolandan M; Tajik A; Wang N; Yu MF
    Nanotechnology; 2012 Jun; 23(23):235704. PubMed ID: 22595833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emergence of multifrequency force microscopy.
    Garcia R; Herruzo ET
    Nat Nanotechnol; 2012 Apr; 7(4):217-26. PubMed ID: 22466857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral force microscope calibration using a modified atomic force microscope cantilever.
    Reitsma MG
    Rev Sci Instrum; 2007 Oct; 78(10):106102. PubMed ID: 17979458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.