BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23619081)

  • 1. First evidence of sucrose biosynthesis by single cyanobacterial bimodular proteins.
    Martínez-Noël GM; Cumino AC; Kolman Mde L; Salerno GL
    FEBS Lett; 2013 Jun; 587(11):1669-74. PubMed ID: 23619081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteins involved in sucrose synthesis in the marine cyanobacterium Synechococcus sp. PCC 7002 are encoded by two genes transcribed from a gene cluster.
    Cumino AC; Perez-Cenci M; Giarrocco LE; Salerno GL
    FEBS Lett; 2010 Nov; 584(22):4655-60. PubMed ID: 20974142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution.
    Cumino A; Curatti L; Giarrocco L; Salerno GL
    FEBS Lett; 2002 Apr; 517(1-3):19-23. PubMed ID: 12062401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of sucrose synthesis.
    Lunn JE
    Plant Physiol; 2002 Apr; 128(4):1490-500. PubMed ID: 11950997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT.
    But SY; Khmelenina VN; Reshetnikov AS; Trotsenko YA
    FEMS Microbiol Lett; 2013 Oct; 347(1):43-51. PubMed ID: 23865613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes.
    Porchia AC; Salerno GL
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13600-4. PubMed ID: 8942980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of Synechococcus amylosucrase and fructokinase encoding genes discovers two novel actors on the stage of cyanobacterial sucrose metabolism.
    Perez-Cenci M; Salerno GL
    Plant Sci; 2014 Jul; 224():95-102. PubMed ID: 24908510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation.
    Cumino AC; Marcozzi C; Barreiro R; Salerno GL
    Plant Physiol; 2007 Mar; 143(3):1385-97. PubMed ID: 17237189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942.
    Qiao C; Duan Y; Zhang M; Hagemann M; Luo Q; Lu X
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New complexities in the synthesis of sucrose.
    Lunn JE; MacRae E
    Curr Opin Plant Biol; 2003 Jun; 6(3):208-14. PubMed ID: 12753969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803.
    Lunn JE; Price GD; Furbank RT
    Plant Mol Biol; 1999 May; 40(2):297-305. PubMed ID: 10412908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucrose-phosphate phosphatase from Anabaena sp. strain PCC 7120: isolation of the protein and gene revealed significant structural differences from the higher-plant enzyme.
    Cumino A; Ekeroth C; Salerno GL
    Planta; 2001 Dec; 214(2):250-6. PubMed ID: 11800389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell.
    Fieulaine S; Lunn JE; Borel F; Ferrer JL
    Plant Cell; 2005 Jul; 17(7):2049-58. PubMed ID: 15937230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and Kinetic Evidence for an Association between Sucrose-Phosphate Synthase and Sucrose-Phosphate Phosphatase.
    Echeverria E; Salvucci ME; Gonzalez P; Paris G; Salerno G
    Plant Physiol; 1997 Sep; 115(1):223-227. PubMed ID: 12223802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Lin PC; Zhang F; Pakrasi HB
    Sci Rep; 2020 Jan; 10(1):390. PubMed ID: 31942010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of sucrose-phosphate synthase by a protein factor/sucrose-phosphate phosphatase.
    Salerno GL; Echeverria E; Pontis HG
    Cell Mol Biol (Noisy-le-grand); 1996 Jul; 42(5):665-72. PubMed ID: 8832097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants.
    Nagao M; Uemura M
    Planta; 2012 Apr; 235(4):851-61. PubMed ID: 22095241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants.
    Lunn JE; Gillespie VJ; Furbank RT
    J Exp Bot; 2003 Jan; 54(381):223-37. PubMed ID: 12493850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence.
    Porchia AC; Curatti L; Salerno GL
    Planta; 1999 Nov; 210(1):34-40. PubMed ID: 10592030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.
    But SY; Solntseva NP; Egorova SV; Mustakhimov II; Khmelenina VN; Reshetnikov A; Trotsenko YA
    Extremophiles; 2018 May; 22(3):433-445. PubMed ID: 29442248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.