BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23619567)

  • 1. Zebrafish as a model organism to study host-pathogen interactions.
    Medina C; Royo JL
    Methods; 2013 Aug; 62(3):241-5. PubMed ID: 23619567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Salmonella allows real-time heterologous gene expression monitoring within infected zebrafish embryos.
    Medina C; Santero E; Gómez-Skarmeta JL; Royo JL
    J Biotechnol; 2012 Feb; 157(3):413-6. PubMed ID: 22178780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of multi-site infection model in zebrafish larvae for studying Staphylococcus aureus infectious disease.
    Li YJ; Hu B
    J Genet Genomics; 2012 Sep; 39(9):521-34. PubMed ID: 23021551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infection of zebrafish embryos with intracellular bacterial pathogens.
    Benard EL; van der Sar AM; Ellett F; Lieschke GJ; Spaink HP; Meijer AH
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate immune cells and bacterial infection in zebrafish.
    Astin JW; Keerthisinghe P; Du L; Sanderson LE; Crosier KE; Crosier PS; Hall CJ
    Methods Cell Biol; 2017; 138():31-60. PubMed ID: 28129850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.
    Varas M; Fariña A; Díaz-Pascual F; Ortíz-Severín J; Marcoleta AE; Allende ML; Santiviago CA; Chávez FP
    J Microbiol Methods; 2017 Apr; 135():20-25. PubMed ID: 28161588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection.
    Ordas A; Hegedus Z; Henkel CV; Stockhammer OW; Butler D; Jansen HJ; Racz P; Mink M; Spaink HP; Meijer AH
    Fish Shellfish Immunol; 2011 Nov; 31(5):716-24. PubMed ID: 20816807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host-microbe interactions in the developing zebrafish.
    Kanther M; Rawls JF
    Curr Opin Immunol; 2010 Feb; 22(1):10-9. PubMed ID: 20153622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Pseudomonas virulence with nonmammalian host: zebrafish.
    Llamas MA; van der Sar AM
    Methods Mol Biol; 2014; 1149():709-21. PubMed ID: 24818945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium.
    de Oliveira S; Lopez-Muñoz A; Martínez-Navarro FJ; Galindo-Villegas J; Mulero V; Calado Â
    Dev Comp Immunol; 2015 Mar; 49(1):44-8. PubMed ID: 25445910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish.
    Meijer AH; van der Vaart M; Spaink HP
    Cell Microbiol; 2014 Jan; 16(1):39-49. PubMed ID: 24188444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos.
    Davis JM; Clay H; Lewis JL; Ghori N; Herbomel P; Ramakrishnan L
    Immunity; 2002 Dec; 17(6):693-702. PubMed ID: 12479816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish.
    Walton EM; Cronan MR; Beerman RW; Tobin DM
    PLoS One; 2015; 10(10):e0138949. PubMed ID: 26445458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit.
    Royo JL; Becker PD; Camacho EM; Cebolla A; Link C; Santero E; Guzmán CA
    Nat Methods; 2007 Nov; 4(11):937-42. PubMed ID: 17922017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos.
    Bernut A; Dupont C; Sahuquet A; Herrmann JL; Lutfalla G; Kremer L
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26382225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infectious disease modeling and innate immune function in zebrafish embryos.
    Cui C; Benard EL; Kanwal Z; Stockhammer OW; van der Vaart M; Zakrzewska A; Spaink HP; Meijer AH
    Methods Cell Biol; 2011; 105():273-308. PubMed ID: 21951535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections.
    van der Sar AM; Musters RJ; van Eeden FJ; Appelmelk BJ; Vandenbroucke-Grauls CM; Bitter W
    Cell Microbiol; 2003 Sep; 5(9):601-11. PubMed ID: 12925130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Looking through zebrafish to study host-pathogen interactions].
    Bernut A; Lutfalla G; Kremer L
    Med Sci (Paris); 2015; 31(6-7):638-46. PubMed ID: 26152168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic injection of zebrafish embryos for high-throughput screening in disease models.
    Spaink HP; Cui C; Wiweger MI; Jansen HJ; Veneman WJ; Marín-Juez R; de Sonneville J; Ordas A; Torraca V; van der Ent W; Leenders WP; Meijer AH; Snaar-Jagalska BE; Dirks RP
    Methods; 2013 Aug; 62(3):246-54. PubMed ID: 23769806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish and frog models of Mycobacterium marinum infection.
    Cosma CL; Swaim LE; Volkman H; Ramakrishnan L; Davis JM
    Curr Protoc Microbiol; 2006 Dec; Chapter 10():Unit 10B.2. PubMed ID: 18770575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.