These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23619571)

  • 1. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges.
    Bhattacharjee S; Rietjens IM; Singh MP; Atkins TM; Purkait TK; Xu Z; Regli S; Shukaliak A; Clark RJ; Mitchell BS; Alink GM; Marcelis AT; Fink MJ; Veinot JG; Kauzlarich SM; Zuilhof H
    Nanoscale; 2013 Jun; 5(11):4870-83. PubMed ID: 23619571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells.
    Bhattacharjee S; de Haan LH; Evers NM; Jiang X; Marcelis AT; Zuilhof H; Rietjens IM; Alink GM
    Part Fibre Toxicol; 2010 Sep; 7():25. PubMed ID: 20831820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics.
    Bhattacharjee S; Ershov D; Fytianos K; van der Gucht J; Alink GM; Rietjens IM; Marcelis AT; Zuilhof H
    Part Fibre Toxicol; 2012 Apr; 9():11. PubMed ID: 22546147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells.
    Ahamed M; Akhtar MJ; Alhadlaq HA
    Environ Toxicol; 2020 May; 35(5):599-608. PubMed ID: 31904905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface charge of gold nanoparticles mediates mechanism of toxicity.
    Schaeublin NM; Braydich-Stolle LK; Schrand AM; Miller JM; Hutchison J; Schlager JJ; Hussain SM
    Nanoscale; 2011 Feb; 3(2):410-20. PubMed ID: 21229159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells.
    Liu G; Li Q; Ni W; Zhang N; Zheng X; Wang Y; Shao D; Tai G
    Int J Nanomedicine; 2015; 10():6075-87. PubMed ID: 26491285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate and toxicity of Raman-active silica-gold nanoparticles in mice.
    Thakor AS; Luong R; Paulmurugan R; Lin FI; Kempen P; Zavaleta C; Chu P; Massoud TF; Sinclair R; Gambhir SS
    Sci Transl Med; 2011 Apr; 3(79):79ra33. PubMed ID: 21508310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe
    Su H; Li Z; Lazar L; Alhamoud Y; Song X; Li J; Wang Y; Fiati Kenston SS; Lqbal MZ; Wu A; Li Z; Hua Q; Ding M; Zhao J
    Environ Toxicol; 2018 Oct; 33(10):1078-1088. PubMed ID: 30098274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution.
    Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B
    Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles.
    Khanna L; Gupta G; Tripathi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():552-566. PubMed ID: 30678942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells.
    Yang YX; Song ZM; Cheng B; Xiang K; Chen XX; Liu JH; Cao A; Wang Y; Liu Y; Wang H
    J Appl Toxicol; 2014 Apr; 34(4):424-35. PubMed ID: 24302550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes.
    Lozano O; Silva-Platas C; Chapoy-Villanueva H; Pérez BE; Lees JG; Ramachandra CJA; Contreras-Torres FF; Lázaro-Alfaro A; Luna-Figueroa E; Bernal-Ramírez J; Gordillo-Galeano A; Benitez A; Oropeza-Almazán Y; Castillo EC; Koh PL; Hausenloy DJ; Lim SY; García-Rivas G
    Part Fibre Toxicol; 2020 May; 17(1):15. PubMed ID: 32381100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity.
    Rubio L; Pyrgiotakis G; Beltran-Huarac J; Zhang Y; Gaurav J; Deloid G; Spyrogianni A; Sarosiek KA; Bello D; Demokritou P
    Part Fibre Toxicol; 2019 Oct; 16(1):40. PubMed ID: 31665028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering.
    Malvindi MA; De Matteis V; Galeone A; Brunetti V; Anyfantis GC; Athanassiou A; Cingolani R; Pompa PP
    PLoS One; 2014; 9(1):e85835. PubMed ID: 24465736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of zinc oxide nanoparticles and Fatty acids on toxicity to caco-2 cells.
    Cao Y; Roursgaard M; Kermanizadeh A; Loft S; Møller P
    Int J Toxicol; 2015; 34(1):67-76. PubMed ID: 25421740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Fe-doped silica nanoparticles as a novel ultrasound-magnetic resonance dual-mode imaging contrast agent for HER2-positive breast cancer.
    Li X; Xia S; Zhou W; Ji R; Zhan W
    Int J Nanomedicine; 2019; 14():2397-2413. PubMed ID: 31040664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties.
    Kubo AL; Vasiliev G; Vija H; Krishtal J; Tõugu V; Visnapuu M; Kisand V; Kahru A; Bondarenko OM
    Arch Toxicol; 2020 May; 94(5):1561-1573. PubMed ID: 32253467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crucial physicochemical factors mediating mitochondrial toxicity of nanoparticles at noncytotoxic concentration.
    Zhang Z; Miao G; Lu L; Yin H; Wang Y; Wang B; Pan R; Zheng C; Jin X
    Sci Total Environ; 2024 Jan; 908():168211. PubMed ID: 37918742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of arsenic genotoxicity by TiO
    Wang X; Liu Y; Wang J; Nie Y; Chen S; Hei TK; Deng Z; Wu L; Zhao G; Xu A
    Nanotoxicology; 2017 Oct; 11(8):978-995. PubMed ID: 29046140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.