These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23619643)

  • 1. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli.
    Savitskaya E; Semenova E; Dedkov V; Metlitskaya A; Severinov K
    RNA Biol; 2013 May; 10(5):716-25. PubMed ID: 23619643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation.
    Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.
    Díez-Villaseñor C; Guzmán NM; Almendros C; García-Martínez J; Mojica FJ
    RNA Biol; 2013 May; 10(5):792-802. PubMed ID: 23445770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR interference directs strand specific spacer acquisition.
    Swarts DC; Mosterd C; van Passel MW; Brouns SJ
    PLoS One; 2012; 7(4):e35888. PubMed ID: 22558257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System.
    Bourgeois J; Lazinski DW; Camilli A
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pervasive generation of oppositely oriented spacers during CRISPR adaptation.
    Shmakov S; Savitskaya E; Semenova E; Logacheva MD; Datsenko KA; Severinov K
    Nucleic Acids Res; 2014 May; 42(9):5907-16. PubMed ID: 24728991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer.
    Richter C; Dy RL; McKenzie RE; Watson BN; Taylor C; Chang JT; McNeil MB; Staals RH; Fineran PC
    Nucleic Acids Res; 2014 Jul; 42(13):8516-26. PubMed ID: 24990370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR adaptation biases explain preference for acquisition of foreign DNA.
    Levy A; Goren MG; Yosef I; Auster O; Manor M; Amitai G; Edgar R; Qimron U; Sorek R
    Nature; 2015 Apr; 520(7548):505-510. PubMed ID: 25874675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex.
    Semenova E; Savitskaya E; Musharova O; Strotskaya A; Vorontsova D; Datsenko KA; Logacheva MD; Severinov K
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7626-31. PubMed ID: 27325762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system.
    Staals RH; Jackson SA; Biswas A; Brouns SJ; Brown CM; Fineran PC
    Nat Commun; 2016 Oct; 7():12853. PubMed ID: 27694798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage-host interactions in Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array.
    Achigar R; Magadán AH; Tremblay DM; Julia Pianzzola M; Moineau S
    Sci Rep; 2017 Mar; 7():43438. PubMed ID: 28262818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array.
    Yosef I; Shitrit D; Goren MG; Burstein D; Pupko T; Qimron U
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14396-401. PubMed ID: 23940313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery.
    Vorontsova D; Datsenko KA; Medvedeva S; Bondy-Denomy J; Savitskaya EE; Pougach K; Logacheva M; Wiedenheft B; Davidson AR; Severinov K; Semenova E
    Nucleic Acids Res; 2015 Dec; 43(22):10848-60. PubMed ID: 26586803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation.
    Maikova A; Boudry P; Shiriaeva A; Vasileva A; Boutserin A; Medvedeva S; Semenova E; Severinov K; Soutourina O
    mBio; 2021 Aug; 12(4):e0213621. PubMed ID: 34425703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of
    He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L
    Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference and priming varies with individual spacer sequences.
    Xue C; Seetharam AS; Musharova O; Severinov K; Brouns SJ; Severin AJ; Sashital DG
    Nucleic Acids Res; 2015 Dec; 43(22):10831-47. PubMed ID: 26586800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degenerate target sites mediate rapid primed CRISPR adaptation.
    Fineran PC; Gerritzen MJ; Suárez-Diez M; Künne T; Boekhorst J; van Hijum SA; Staals RH; Brouns SJ
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):E1629-38. PubMed ID: 24711427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.
    Hargreaves KR; Flores CO; Lawley TD; Clokie MR
    mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.