These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23620326)

  • 1. Three-dimensional region-based segmentation for breast tumors on sonography.
    Huang YL; Chen DR; Chang SC
    J Ultrasound Med; 2013 May; 32(5):835-46. PubMed ID: 23620326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Level set contouring for breast tumor in sonography.
    Huang YL; Jiang YR; Chen DR; Moon WK
    J Digit Imaging; 2007 Sep; 20(3):238-47. PubMed ID: 17252171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Watershed segmentation for breast tumor in 2-D sonography.
    Huang YL; Chen DR
    Ultrasound Med Biol; 2004 May; 30(5):625-32. PubMed ID: 15183228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions.
    Madabhushi A; Metaxas DN
    IEEE Trans Med Imaging; 2003 Feb; 22(2):155-69. PubMed ID: 12715992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Region of Interest Drawing for Quantitative Analysis: Differentiation Between Benign and Malignant Breast Lesions on Contrast-Enhanced Sonography.
    Nakata N; Ohta T; Nishioka M; Takeyama H; Toriumi Y; Kato K; Nogi H; Kamio M; Fukuda K
    J Ultrasound Med; 2015 Nov; 34(11):1969-76. PubMed ID: 26384607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating lesion segmentation on breast sonography as related to lesion type.
    Pons G; Martí J; Martí R; Ganau S; Vilanova JC; Noble JA
    J Ultrasound Med; 2013 Sep; 32(9):1659-70. PubMed ID: 23980229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided diagnosis with textural features for breast lesions in sonograms.
    Chen DR; Huang YL; Lin SH
    Comput Med Imaging Graph; 2011 Apr; 35(3):220-6. PubMed ID: 21131178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.
    Gu P; Lee WM; Roubidoux MA; Yuan J; Wang X; Carson PL
    Ultrasonics; 2016 Feb; 65():51-8. PubMed ID: 26547117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of breast tumors using sonographic texture analysis.
    Ardakani AA; Gharbali A; Mohammadi A
    J Ultrasound Med; 2015 Feb; 34(2):225-31. PubMed ID: 25614395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chest wall segmentation in automated 3D breast ultrasound scans.
    Tan T; Platel B; Mann RM; Huisman H; Karssemeijer N
    Med Image Anal; 2013 Dec; 17(8):1273-81. PubMed ID: 23273891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images.
    Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF
    Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of breast tumors using elastographic and B-mode features: comparison of automatic selection of representative slice and physician-selected slice of images.
    Moon WK; Chang SC; Chang JM; Cho N; Huang CS; Kuo JW; Chang RF
    Ultrasound Med Biol; 2013 Jul; 39(7):1147-57. PubMed ID: 23562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal Multiparameter-Based Approach for Benign-Malignant Classification of Breast Tumors.
    Ara SR; Alam F; Rahman MH; Akhter S; Awwal R; Hasan K
    Ultrasound Med Biol; 2015 Jul; 41(7):2022-38. PubMed ID: 25913281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation.
    Gómez W; Leija L; Alvarenga AV; Infantosi AF; Pereira WC
    Med Phys; 2010 Jan; 37(1):82-95. PubMed ID: 20175469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy.
    Sahiner B; Chan HP; Roubidoux MA; Hadjiiski LM; Helvie MA; Paramagul C; Bailey J; Nees AV; Blane C
    Radiology; 2007 Mar; 242(3):716-24. PubMed ID: 17244717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses.
    Chen L; Chen Y; Diao XH; Fang L; Pang Y; Cheng AQ; Li WP; Wang Y
    Ultrasound Med Biol; 2013 Oct; 39(10):1735-42. PubMed ID: 23849390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility Testing: Three-dimensional Tumor Mapping in Different Orientations of Automated Breast Ultrasound.
    Lo CM; Chan SW; Yang YW; Chang YC; Huang CS; Jou YS; Chang RF
    Ultrasound Med Biol; 2016 May; 42(5):1201-10. PubMed ID: 26825468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images.
    Wu WJ; Lin SW; Moon WK
    Comput Med Imaging Graph; 2012 Dec; 36(8):627-33. PubMed ID: 22939834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features.
    Joo S; Yang YS; Moon WK; Kim HC
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical breast ultrasound image segmentation by machine learning.
    Xu Y; Wang Y; Yuan J; Cheng Q; Wang X; Carson PL
    Ultrasonics; 2019 Jan; 91():1-9. PubMed ID: 30029074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.