These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23620735)

  • 41. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH.
    Takahashi K; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family.
    Tanaka N; Nonaka T; Nakanishi M; Deyashiki Y; Hara A; Mitsui Y
    Structure; 1996 Jan; 4(1):33-45. PubMed ID: 8805511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis.
    Ehsani M; Fernández MR; Biosca JA; Dequin S
    Biotechnol Bioeng; 2009 Oct; 104(2):381-9. PubMed ID: 19507198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The three-dimensional structure of the bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/dihydropteroate synthase of Saccharomyces cerevisiae.
    Lawrence MC; Iliades P; Fernley RT; Berglez J; Pilling PA; Macreadie IG
    J Mol Biol; 2005 May; 348(3):655-70. PubMed ID: 15826662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of Hsp33/YOR391Cp from the yeast Saccharomyces cerevisiae.
    Guo PC; Zhou YY; Ma XX; Li WF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Dec; 66(Pt 12):1557-61. PubMed ID: 21139195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural analysis of Saccharomyces cerevisiae myo-inositol phosphate synthase.
    Kniewel R; Buglino JA; Shen V; Chadha T; Beckwith A; Lima CD
    J Struct Funct Genomics; 2002; 2(3):129-34. PubMed ID: 12836703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The atomic structure of pentameric lumazine synthase from Saccharomyces cerevisiae at 1.85 A resolution reveals the binding mode of a phosphonate intermediate analogue.
    Meining W; Mörtl S; Fischer M; Cushman M; Bacher A; Ladenstein R
    J Mol Biol; 2000 May; 299(1):181-97. PubMed ID: 10860731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure and catalytic mechanism of leucoanthocyanidin reductase from Vitis vinifera.
    Maugé C; Granier T; d'Estaintot BL; Gargouri M; Manigand C; Schmitter JM; Chaudière J; Gallois B
    J Mol Biol; 2010 Apr; 397(4):1079-91. PubMed ID: 20138891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural dissection of sterol glycosyltransferase UGT51 from Saccharomyces cerevisiae for substrate specificity.
    Chen L; Zhang Y; Feng Y
    J Struct Biol; 2018 Dec; 204(3):371-379. PubMed ID: 30395931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase.
    Lu KY; Chen WF; Rety S; Liu NN; Wu WQ; Dai YX; Li D; Ma HY; Dou SX; Xi XG
    Nucleic Acids Res; 2018 Feb; 46(3):1486-1500. PubMed ID: 29202194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure of a putative NADPH-dependent oxidoreductase (GI: 18204011) from mouse at 2.10 A resolution.
    Levin I; Schwarzenbacher R; McMullan D; Abdubek P; Ambing E; Biorac T; Cambell J; Canaves JM; Chiu HJ; Dai X; Deacon AM; DiDonato M; Elsliger MA; Godzik A; Grittini C; Grzechnik SK; Hampton E; Jaroszewski L; Karlak C; Klock HE; Koesema E; Kreusch A; Kuhn P; Lesley SA; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Page R; Quijano K; Reyes R; Robb A; Sims E; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; von Delft F; Wang X; West B; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA
    Proteins; 2004 Aug; 56(3):629-33. PubMed ID: 15229897
    [No Abstract]   [Full Text] [Related]  

  • 53. Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases.
    Bou-Nader C; Brégeon D; Pecqueur L; Fontecave M; Hamdane D
    Biochemistry; 2018 Sep; 57(37):5407-5414. PubMed ID: 30149704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity.
    Holmes W; Jogl G
    J Biol Chem; 2006 Dec; 281(49):38109-16. PubMed ID: 17050532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of the role of a conserved glycine motif in the Saccharomyces cerevisiae xylose reductase.
    Chu BC; Lee H
    Curr Microbiol; 2006 Aug; 53(2):118-23. PubMed ID: 16802208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
    Kim MH; Kim Y; Park HJ; Lee JS; Kwak SN; Jung WH; Lee SG; Kim D; Lee YC; Oh TK
    J Biol Chem; 2008 Nov; 283(46):31981-90. PubMed ID: 18782772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae.
    Shi W; Tanaka KS; Crother TR; Taylor MW; Almo SC; Schramm VL
    Biochemistry; 2001 Sep; 40(36):10800-9. PubMed ID: 11535055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.
    Le DT; Lee BC; Marino SM; Zhang Y; Fomenko DE; Kaya A; Hacioglu E; Kwak GH; Koc A; Kim HY; Gladyshev VN
    J Biol Chem; 2009 Feb; 284(7):4354-64. PubMed ID: 19049972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2α indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway.
    Liu H; Wang H; Teng M; Li X
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):501-13. PubMed ID: 24531484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.