These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2362079)

  • 1. Effects of 1,4-naphthoquinone derivatives on red blood cell metabolism.
    Kruger-Zeitzer E; Sullivan SG; Stern A; Munday R
    J Appl Toxicol; 1990 Apr; 10(2):129-33. PubMed ID: 2362079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of aromatic thiols in the human red blood cell.
    Amrolia P; Sullivan SG; Stern A; Munday R
    J Appl Toxicol; 1989 Apr; 9(2):113-8. PubMed ID: 2715566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nine synthetic putative metabolites of primaquine on activity of the hexose monophosphate shunt in intact human red blood cells in vitro.
    Baird JK; McCormick GJ; Canfield CJ
    Biochem Pharmacol; 1986 Apr; 35(7):1099-106. PubMed ID: 3754446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone induced stimulation of hexose monophosphate shunt activity in the guinea pig lens: role of zeta-crystallin.
    Rao P; Zigler JS
    Biochim Biophys Acta; 1992 Mar; 1116(1):75-81. PubMed ID: 1540627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of oxidant stress in lawsone-induced hemolytic anemia.
    McMillan DC; Sarvate SD; Oatis JE; Jollow DJ
    Toxicol Sci; 2004 Dec; 82(2):647-55. PubMed ID: 15456924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primaquine-mediated oxidative metabolism in the human red cell. Lack of dependence on oxyhemoglobin, H2O2 formation, or glutathione turnover.
    Kelman SN; Sullivan SG; Stern A
    Biochem Pharmacol; 1982 Jul; 31(14):2409-14. PubMed ID: 7126253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of erythrocyte superoxide dismutase by diethyldithiocarbamate also results in oxyhemoglobin-catalyzed glutathione depletion and methemoglobin production.
    Kelner MJ; Alexander NM
    J Biol Chem; 1986 Feb; 261(4):1636-41. PubMed ID: 3003078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the phenacetin metabolite 4-nitrosophenetol on glycolysis and pentose phosphate pathway in human red cells.
    Gallemann D; Eyer P
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):37-49. PubMed ID: 8439396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexose monophosphate shunt activities in human erythrocytes during oxidative damage induced by hydrogen peroxide.
    Guitton J; Servanin S; Francina A
    Arch Toxicol; 2003 Jul; 77(7):410-7. PubMed ID: 12851742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative toxicity of alkyl-1,4-naphthoquinones in rats: relationship to free radical production in vitro.
    Munday R; Fowke EA; Smith BL; Munday CM
    Free Radic Biol Med; 1994 Jun; 16(6):725-31. PubMed ID: 8070675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H2O2 production, modification of the glutathione status and methemoglobin formation in red blood cells exposed to diethyldithiocarbamate in vitro.
    Sinet PM; Garber P; Jerome H
    Biochem Pharmacol; 1982 Feb; 31(4):521-5. PubMed ID: 6279106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde.
    Thornalley PJ; Stern A
    Biochem Pharmacol; 1985 Apr; 34(8):1157-64. PubMed ID: 3994738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of 2,3-dialkyl-1,4-naphthoquinones in rats: comparison with cytotoxicity in vitro.
    Munday R; Smith BL; Munday CM
    Free Radic Biol Med; 1995 Dec; 19(6):759-65. PubMed ID: 8582648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelations between glycolysis and the hexose monophosphate shunt in erythrocytes as studied on the basis of a mathematical model.
    Schuster R; Holzhütter HG; Jacobasch G
    Biosystems; 1988; 22(1):19-36. PubMed ID: 3191218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrolytic autoxidation of 1,4-naphthoquinone-2-potassium sulphonate: implications for 1,4-naphthoquinone-2-potassium sulphonate-induced oxidative stress in the red blood cell.
    Thornalley PJ; Stern A
    Chem Biol Interact; 1985 Dec; 56(1):55-71. PubMed ID: 3000635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation.
    Thorburn DR; Kuchel PW
    Eur J Biochem; 1985 Jul; 150(2):371-86. PubMed ID: 4018089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.