These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23620802)

  • 1. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.
    Pan YH; Zhang Y; Cui J; Liu Y; McAllan BM; Liao CC; Zhang S
    PLoS One; 2013; 8(4):e62039. PubMed ID: 23620802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats.
    Han Y; Zheng G; Yang T; Zhang S; Dong D; Pan YH
    BMC Evol Biol; 2015 May; 15():88. PubMed ID: 25980933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of the FK506 binding protein 1B to hibernation in bats.
    Liu D; Zheng S; Zheng G; Lv Q; Shen B; Yuan X; Pan YH
    Cryobiology; 2018 Aug; 83():1-8. PubMed ID: 30056853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant Defenses in the Brains of Bats during Hibernation.
    Yin Q; Ge H; Liao CC; Liu D; Zhang S; Pan YH
    PLoS One; 2016; 11(3):e0152135. PubMed ID: 27010916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression and adaptive evolution of ZBED1 in the hibernating greater horseshoe bat (Rhinolophus ferrumequinum).
    Xiao Y; Wu Y; Sun K; Wang H; Jiang T; Lin A; Huang X; Yue X; Shi L; Feng J
    J Exp Biol; 2016 Mar; 219(Pt 6):834-43. PubMed ID: 26787476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis.
    Yin Q; Zhang Y; Dong D; Lei M; Zhang S; Liao CC; Pan YH
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1004-1019. PubMed ID: 28473298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression and functional constraint of PRL-2 in hibernating bat.
    Yuan L; Chen J; Lin B; Zhang J; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):375-81. PubMed ID: 17683965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis).
    Hecht AM; Braun BC; Krause E; Voigt CC; Greenwood AD; Czirják GÁ
    Sci Rep; 2015 Nov; 5():16604. PubMed ID: 26586174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Expression of Hepatic Genes of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) between the Summer Active and Winter Torpid States.
    Xiao Y; Wu Y; Sun K; Wang H; Zhang B; Song S; Du Z; Jiang T; Shi L; Wang L; Lin A; Yue X; Li C; Chen T; Feng J
    PLoS One; 2015; 10(12):e0145702. PubMed ID: 26698122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach.
    Zhang Y; Pan YH; Yin Q; Yang T; Dong D; Liao CC; Zhang S
    J Proteomics; 2014 Jun; 105():266-84. PubMed ID: 24434588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trade-offs Influencing the Physiological Ecology of Hibernation in Temperate-Zone Bats.
    Willis CKR
    Integr Comp Biol; 2017 Dec; 57(6):1214-1224. PubMed ID: 28985332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional studies of leptins from hibernating and non-hibernating bats.
    He L; Pan Y; He G; Lin B; Liao CC; Zuo X; Yuan L
    Gen Comp Endocrinol; 2010 Aug; 168(1):29-35. PubMed ID: 20394750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes.
    Lei M; Dong D; Mu S; Pan YH; Zhang S
    PLoS One; 2014; 9(9):e107746. PubMed ID: 25251558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy availability influences microclimate selection of hibernating bats.
    Boyles JG; Dunbar MB; Storm JJ; Brack V
    J Exp Biol; 2007 Dec; 210(Pt 24):4345-50. PubMed ID: 18055623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p38 MAPK regulation of transcription factor targets in muscle and heart of the hibernating bat, Myotis lucifugus.
    Eddy SF; Storey KB
    Cell Biochem Funct; 2007; 25(6):759-65. PubMed ID: 17487931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats.
    Eddy SF; McNally JD; Storey KB
    Arch Biochem Biophys; 2005 Mar; 435(1):103-11. PubMed ID: 15680912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: implications for conservation and management.
    Brack V
    Environ Manage; 2007 Nov; 40(5):739-46. PubMed ID: 17874161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus).
    Czenze ZJ; Willis CK
    J Comp Physiol B; 2015 Jul; 185(5):575-86. PubMed ID: 25809999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-activation of Akt, Nrf2, and NF-κB signals under UPR
    Huang W; Liao CC; Han Y; Lv J; Lei M; Li Y; Lv Q; Dong D; Zhang S; Pan YH; Luo J
    Commun Biol; 2020 Nov; 3(1):658. PubMed ID: 33177645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.
    Willis CK; Wilcox A
    Horm Behav; 2014 Jun; 66(1):66-73. PubMed ID: 24768718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.