These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 23621004)
21. A comparison of three calcium phosphate-based space fillers in sinus elevation: a study in rabbits. Lambert F; Leonard A; Lecloux G; Sourice S; Pilet P; Rompen E Int J Oral Maxillofac Implants; 2013; 28(2):393-402. PubMed ID: 23527340 [TBL] [Abstract][Full Text] [Related]
22. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722 [TBL] [Abstract][Full Text] [Related]
23. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Zheng Y; Yang Y; Deng Y Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():770-782. PubMed ID: 30889752 [TBL] [Abstract][Full Text] [Related]
24. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Lee DS; Pai Y; Chang S; Kim DH Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():971-6. PubMed ID: 26478393 [TBL] [Abstract][Full Text] [Related]
25. Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Daculsi G; Goyenvalle E; Cognet R; Aguado E; Suokas EO Biomaterials; 2011 Apr; 32(12):3166-77. PubMed ID: 21315446 [TBL] [Abstract][Full Text] [Related]
27. Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model. Costa NM; Yassuda DH; Sader MS; Fernandes GV; Soares GD; Granjeiro JM Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():63-71. PubMed ID: 26838825 [TBL] [Abstract][Full Text] [Related]
28. Bone formation using β-tricalcium phosphate/carboxymethyl-chitin composite scaffold in rat calvarial defects. Taniyama K; Shirakata Y; Yoshimoto T; Takeuchi N; Yoshihara Y; Noguchi K Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Dec; 116(6):e450-6. PubMed ID: 22901650 [TBL] [Abstract][Full Text] [Related]
29. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Schneider OD; Weber F; Brunner TJ; Loher S; Ehrbar M; Schmidlin PR; Stark WJ Acta Biomater; 2009 Jun; 5(5):1775-84. PubMed ID: 19121610 [TBL] [Abstract][Full Text] [Related]
30. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
31. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects. Pripatnanont P; Praserttham P; Suttapreyasri S; Leepong N; Monmaturapoj N Int J Oral Maxillofac Implants; 2016; 31(2):294-303. PubMed ID: 27004276 [TBL] [Abstract][Full Text] [Related]
32. Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment. Lin CP; Lee BS; Lin FH; Kok SH; Lan WH J Endod; 2001 Jun; 27(6):389-93. PubMed ID: 11487131 [TBL] [Abstract][Full Text] [Related]
33. Comparison of bone regeneration between octacalcium phosphate/collagen composite and β-tricalcium phosphate in canine calvarial defect. Tanuma Y; Matsui K; Kawai T; Matsui A; Suzuki O; Kamakura S; Echigo S Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Jan; 115(1):9-17. PubMed ID: 22901651 [TBL] [Abstract][Full Text] [Related]
34. Bone healing with oxytocin-loaded microporous β-TCP bone substitute in ectopic bone formation model and critical-sized osseous defect of rat. Park JW; Kim JM; Lee HJ; Jeong SH; Suh JY; Hanawa T J Clin Periodontol; 2014 Feb; 41(2):181-90. PubMed ID: 24256613 [TBL] [Abstract][Full Text] [Related]
35. The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formation in a rat model of femoral distraction osteogenesis. Yang JH; Kim HJ; Kim SE; Yun YP; Bae JH; Kim SJ; Choi KH; Song HR Cytotherapy; 2012 Mar; 14(3):315-26. PubMed ID: 22122301 [TBL] [Abstract][Full Text] [Related]
36. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model. Pang EK; Im SU; Kim CS; Choi SH; Chai JK; Kim CK; Han SB; Cho KS J Periodontol; 2004 Oct; 75(10):1364-70. PubMed ID: 15562914 [TBL] [Abstract][Full Text] [Related]
37. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
38. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration. Tripathi G; Sugiura Y; Tsuru K; Ishikawa K Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092 [TBL] [Abstract][Full Text] [Related]
39. Guided Bone Regeneration in Standardized Calvarial Defects in Rats Using Bio-Oss and β-Tricalcium Phosphate with Adjunct Platelet-Derived Growth Factor Therapy: A Real-Time In Vivo Microcomputed Tomographic, Biomechanical, and Histologic Analysis. Al-Askar M; Javed F; Al-Hezaimi K; Al-Hamdan KS; Ramalingam S; Aldahmash A; Nooh N; Al-Rasheed A Int J Periodontics Restorative Dent; 2016; 36 Suppl():s61-73. PubMed ID: 27031635 [TBL] [Abstract][Full Text] [Related]
40. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model. Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]