These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 23621018)
1. N-octyl-N-Arginine chitosan micelles as an oral delivery system of insulin. Zhang ZH; Abbad S; Pan RR; Waddad AY; Hou LL; Lv HX; Zhou JP J Biomed Nanotechnol; 2013 Apr; 9(4):601-9. PubMed ID: 23621018 [TBL] [Abstract][Full Text] [Related]
2. N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Yu F; He C; Waddad AY; Munyendo WL; Lv H; Zhou J; Zhang Q Drug Dev Ind Pharm; 2014 Jun; 40(6):774-82. PubMed ID: 23679668 [TBL] [Abstract][Full Text] [Related]
3. [Synthesis and characterization of N-octyl-N-arginine chitosan--a chitosan derivant with a mimetic structure of cell-penetrating peptides]. Liu CY; Pan RR; Jiang TY; Zhou JP; Lü HX Yao Xue Xue Bao; 2012 Jun; 47(6):797-802. PubMed ID: 22919730 [TBL] [Abstract][Full Text] [Related]
4. N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Yu F; Jiang F; Tang X; Wang B Drug Dev Ind Pharm; 2018 Apr; 44(4):615-623. PubMed ID: 29188736 [TBL] [Abstract][Full Text] [Related]
5. The studies of N-Octyl-N-Arginine-Chitosan coated liposome as an oral delivery system of Cyclosporine A. Deng J; Zhang Z; Liu C; Yin L; Zhou J; Lv H J Pharm Pharmacol; 2015 Oct; 67(10):1363-70. PubMed ID: 26105005 [TBL] [Abstract][Full Text] [Related]
6. In vitro cell culture evaluation and in vivo efficacy of amphiphilic chitosan for oral insulin delivery. Shelma R; Sharma CP J Biomed Nanotechnol; 2013 Feb; 9(2):167-76. PubMed ID: 23627043 [TBL] [Abstract][Full Text] [Related]
7. Self-assembled micelles based on N-octyl-N'-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Qu G; Hou S; Qu D; Tian C; Zhu J; Xue L; Ju C; Zhang C Carbohydr Polym; 2019 Mar; 207():428-439. PubMed ID: 30600025 [TBL] [Abstract][Full Text] [Related]
8. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Jin Y; Song Y; Zhu X; Zhou D; Chen C; Zhang Z; Huang Y Biomaterials; 2012 Feb; 33(5):1573-82. PubMed ID: 22093292 [TBL] [Abstract][Full Text] [Related]
9. In-vitro and in-vivo cytotoxicity and efficacy evaluation of novel glycyl-glycine and alanyl-alanine conjugates of chitosan and trimethyl chitosan nano-particles as carriers for oral insulin delivery. Jafary Omid N; Bahari Javan N; Dehpour AR; Partoazar A; Rafiee Tehrani M; Dorkoosh F Int J Pharm; 2018 Jan; 535(1-2):293-307. PubMed ID: 29138048 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Rekha MR; Sharma CP J Control Release; 2009 Apr; 135(2):144-51. PubMed ID: 19331862 [TBL] [Abstract][Full Text] [Related]
11. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Mahjub R; Radmehr M; Dorkoosh FA; Ostad SN; Rafiee-Tehrani M Drug Dev Ind Pharm; 2014 Dec; 40(12):1645-59. PubMed ID: 24093431 [TBL] [Abstract][Full Text] [Related]
12. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Mao S; Germershaus O; Fischer D; Linn T; Schnepf R; Kissel T Pharm Res; 2005 Dec; 22(12):2058-68. PubMed ID: 16170693 [TBL] [Abstract][Full Text] [Related]
13. pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery. Woraphatphadung T; Sajomsang W; Gonil P; Treetong A; Akkaramongkolporn P; Ngawhirunpat T; Opanasopit P Int J Pharm; 2016 Jan; 497(1-2):150-60. PubMed ID: 26657271 [TBL] [Abstract][Full Text] [Related]
14. Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. Chen Z; Han S; Yang X; Xu L; Qi H; Hao G; Cao J; Liang Y; Ma Q; Zhang G; Sun Y Int J Nanomedicine; 2020; 15():4877-4898. PubMed ID: 32753869 [TBL] [Abstract][Full Text] [Related]
15. Chitosan-Modified Cationic Amino Acid Nanoparticles as a Novel Oral Delivery System for Insulin. Abbad S; Zhang Z; Waddad AY; Munyendo WL; Lv H; Zhou J J Biomed Nanotechnol; 2015 Mar; 11(3):486-99. PubMed ID: 26307831 [TBL] [Abstract][Full Text] [Related]
16. [Solubilizing and sustained-releasing abilities and safety preliminary evaluation for paclitaxel based on N-octyl-O, N-carboxymethyl chitosan polymeric micelles]. Huo MR; Zhang Y; Zhou JP; Lü L; Liu H; Liu FJ Yao Xue Xue Bao; 2008 Aug; 43(8):855-61. PubMed ID: 18956780 [TBL] [Abstract][Full Text] [Related]
17. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Li L; Jiang G; Yu W; Liu D; Chen H; Liu Y; Tong Z; Kong X; Yao J Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):278-286. PubMed ID: 27770892 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. Ubaidulla U; Khar RK; Ahmad FJ; Sultana Y; Panda AK J Pharm Sci; 2007 Nov; 96(11):3010-23. PubMed ID: 17588259 [TBL] [Abstract][Full Text] [Related]
19. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Tsai LC; Chen CH; Lin CW; Ho YC; Mi FL Int J Biol Macromol; 2019 Apr; 126():141-150. PubMed ID: 30586591 [TBL] [Abstract][Full Text] [Related]
20. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Zhang P; Xu Y; Zhu X; Huang Y Int J Pharm; 2015 Dec; 496(2):993-1005. PubMed ID: 26541299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]