These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 23621033)
1. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. Steffens D; Lersch M; Rosa A; Scher C; Crestani T; Morais MG; Costa JA; Pranke P J Biomed Nanotechnol; 2013 Apr; 9(4):710-8. PubMed ID: 23621033 [TBL] [Abstract][Full Text] [Related]
2. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Steffens D; Leonardi D; Soster PR; Lersch M; Rosa A; Crestani T; Scher C; de Morais MG; Costa JA; Pranke P Burns; 2014 Dec; 40(8):1650-60. PubMed ID: 24794225 [TBL] [Abstract][Full Text] [Related]
3. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
4. Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation. Schmatz DA; Uebel Lda S; Kuntzler SG; Dora CL; Costa JA; de Morais MG J Nanosci Nanotechnol; 2016 Jan; 16(1):1050-9. PubMed ID: 27398568 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Kim SH; Shin C; Min SK; Jung SM; Shin HS Colloids Surf B Biointerfaces; 2012 Feb; 90():113-8. PubMed ID: 22056085 [TBL] [Abstract][Full Text] [Related]
6. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098 [TBL] [Abstract][Full Text] [Related]
7. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
8. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
9. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081 [TBL] [Abstract][Full Text] [Related]
10. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074 [TBL] [Abstract][Full Text] [Related]
11. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Nadri S; Kazemi B; Eslaminejad MB; Yazdani S; Soleimani M Mol Biol Rep; 2013 Jun; 40(6):3883-90. PubMed ID: 23588957 [TBL] [Abstract][Full Text] [Related]
12. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
13. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
14. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944 [TBL] [Abstract][Full Text] [Related]
15. Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells. Suarez-Franco JL; Vázquez-Vázquez FC; Pozos-Guillen A; Montesinos JJ; Alvarez-Fregoso O; Alvarez-Perez MA Dent Mater J; 2018 Jun; 37(3):465-473. PubMed ID: 29553121 [TBL] [Abstract][Full Text] [Related]
16. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds. Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801 [TBL] [Abstract][Full Text] [Related]
17. Airbrushed composite polymer Zr-ACP nanofiber scaffolds with improved cell penetration for bone tissue regeneration. Hoffman K; Skrtic D; Sun J; Tutak W Tissue Eng Part C Methods; 2015 Mar; 21(3):284-91. PubMed ID: 25128269 [TBL] [Abstract][Full Text] [Related]
18. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833 [TBL] [Abstract][Full Text] [Related]
19. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]