BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 23621280)

  • 1. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.
    Saleh M; Tiwari JN; Kemp KC; Yousuf M; Kim KS
    Environ Sci Technol; 2013 May; 47(10):5467-73. PubMed ID: 23621280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.
    Saleh M; Chandra V; Kemp KC; Kim KS
    Nanotechnology; 2013 Jun; 24(25):255702. PubMed ID: 23708437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.
    Chen X; Qiao S; Du Z; Zhou Y; Yang R
    Macromol Rapid Commun; 2013 Jul; 34(14):1181-5. PubMed ID: 23757097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast-based microporous carbon materials for carbon dioxide capture.
    Shen W; He Y; Zhang S; Li J; Fan W
    ChemSusChem; 2012 Jul; 5(7):1274-9. PubMed ID: 22696279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption.
    Wang J; Liu Q
    Nanoscale; 2014 Apr; 6(8):4148-56. PubMed ID: 24603950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.
    Wang J; Senkovska I; Oschatz M; Lohe MR; Borchardt L; Heerwig A; Liu Q; Kaskel S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3160-7. PubMed ID: 23530455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.
    Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2 capture in different carbon materials.
    Jiménez V; Ramírez-Lucas A; Díaz JA; Sánchez P; Romero A
    Environ Sci Technol; 2012 Jul; 46(13):7407-14. PubMed ID: 22679919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture.
    Goel C; Bhunia H; Bajpai PK
    J Environ Manage; 2015 Oct; 162():20-9. PubMed ID: 26217886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.
    Wei H; Deng S; Hu B; Chen Z; Wang B; Huang J; Yu G
    ChemSusChem; 2012 Dec; 5(12):2354-60. PubMed ID: 23132775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT).
    Hu X; Radosz M; Cychosz KA; Thommes M
    Environ Sci Technol; 2011 Aug; 45(16):7068-74. PubMed ID: 21721529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO
    Mohamed MG; Samy MM; Mansoure TH; Li CJ; Li WC; Chen JH; Zhang K; Kuo SW
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prussian blue analogues for CO(2) and SO(2) capture and separation applications.
    Thallapally PK; Motkuri RK; Fernandez CA; McGrail BP; Behrooz GS
    Inorg Chem; 2010 Jun; 49(11):4909-15. PubMed ID: 20166714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO₂ and CH₄.
    Wang J; Krishna R; Wu X; Sun Y; Deng S
    Langmuir; 2015 Sep; 31(36):9845-52. PubMed ID: 26258871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of CO₂, CH₄, and N₂ on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading.
    Yuan B; Wu X; Chen Y; Huang J; Luo H; Deng S
    Environ Sci Technol; 2013 May; 47(10):5474-80. PubMed ID: 23688273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the precursor and synthesis method on the CO2 capture capacity of carpet waste-based sorbents.
    Olivares-Marín M; García S; Pevida C; Wong MS; Maroto-Valer M
    J Environ Manage; 2011 Oct; 92(10):2810-7. PubMed ID: 21763061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microporous polystyrene particles for selective carbon dioxide capture.
    Kaliva M; Armatas GS; Vamvakaki M
    Langmuir; 2012 Feb; 28(5):2690-5. PubMed ID: 22214360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.
    Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent.
    Yan X; Zhang Y; Qiao K; Li X; Zhang Z; Yan Z; Komarneni S
    J Hazard Mater; 2011 Sep; 192(3):1505-8. PubMed ID: 21775061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.