These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 23621281)

  • 1. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis.
    Bussell JD; Keech O; Fenske R; Smith SM
    Plant J; 2013 Aug; 75(4):578-91. PubMed ID: 23621281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development.
    Xiong Y; DeFraia C; Williams D; Zhang X; Mou Z
    Plant Cell Physiol; 2009 Jul; 50(7):1277-91. PubMed ID: 19457984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.
    Kalcsits LA; Guy RD
    Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The plastidial pentose phosphate pathway is essential for postglobular embryo development in
    Andriotis VME; Smith AM
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15297-15306. PubMed ID: 31296566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts.
    Maeda S; Konishi M; Yanagisawa S; Omata T
    Plant Cell Physiol; 2014 Jul; 55(7):1311-24. PubMed ID: 24904028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana.
    Kotur Z; Glass AD
    Plant Cell Environ; 2015 Aug; 38(8):1490-502. PubMed ID: 25474587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression.
    de Jong F; Thodey K; Lejay LV; Bevan MW
    Plant Physiol; 2014 Jan; 164(1):308-20. PubMed ID: 24272701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes.
    Lansing H; Doering L; Fischer K; Baune MC; Schaewen AV
    J Exp Bot; 2020 Jan; 71(3):823-836. PubMed ID: 31641750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants.
    Santos-Filho PR; Saviani EE; Salgado I; Oliveira HC
    Amino Acids; 2014 Apr; 46(4):1121-9. PubMed ID: 24468931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response.
    Hu HC; Wang YY; Tsay YF
    Plant J; 2009 Jan; 57(2):264-78. PubMed ID: 18798873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin.
    Takei K; Takahashi T; Sugiyama T; Yamaya T; Sakakibara H
    J Exp Bot; 2002 Apr; 53(370):971-7. PubMed ID: 11912239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen.
    Pracharoenwattana I; Zhou W; Keech O; Francisco PB; Udomchalothorn T; Tschoep H; Stitt M; Gibon Y; Smith SM
    Plant J; 2010 Jun; 62(5):785-95. PubMed ID: 20202172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of nitrate reduction in Arabidopsis WT and hxk1 mutant under C and N metabolites.
    Reda M
    Physiol Plant; 2013 Oct; 149(2):260-72. PubMed ID: 23480350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.
    Gan Y; Bernreiter A; Filleur S; Abram B; Forde BG
    Plant Cell Physiol; 2012 Jun; 53(6):1003-16. PubMed ID: 22523192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation.
    Hänsch R; Fessel DG; Witt C; Hesberg C; Hoffmann G; Walch-Liu P; Engels C; Kruse J; Rennenberg H; Kaiser WM; Mendel RR
    J Exp Bot; 2001 Jun; 52(359):1251-8. PubMed ID: 11432943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction.
    Loqué D; Tillard P; Gojon A; Lepetit M
    Plant Physiol; 2003 Jun; 132(2):958-67. PubMed ID: 12805624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation.
    Pant BD; Pant P; Erban A; Huhman D; Kopka J; Scheible WR
    Plant Cell Environ; 2015 Jan; 38(1):172-87. PubMed ID: 24894834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of
    Yoneyama T; Suzuki A
    Plant Physiol Biochem; 2019 Mar; 136():245-254. PubMed ID: 30710774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus.
    Han YL; Song HX; Liao Q; Yu Y; Jian SF; Lepo JE; Liu Q; Rong XM; Tian C; Zeng J; Guan CY; Ismail AM; Zhang ZH
    Plant Physiol; 2016 Mar; 170(3):1684-98. PubMed ID: 26757990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.