BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 23621343)

  • 41. Imaging retinal mosaics in the living eye.
    Rossi EA; Chung M; Dubra A; Hunter JJ; Merigan WH; Williams DR
    Eye (Lond); 2011 Mar; 25(3):301-8. PubMed ID: 21390064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive optics for high-resolution imaging.
    Hampson KM; Turcotte R; Miller DT; Kurokawa K; Males JR; Ji N; Booth MJ
    Nat Rev Methods Primers; 2021; 1():. PubMed ID: 35252878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical coherence tomography--current and future applications.
    Adhi M; Duker JS
    Curr Opin Ophthalmol; 2013 May; 24(3):213-21. PubMed ID: 23429598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss.
    Stepien KE; Han DP; Schell J; Godara P; Rha J; Carroll J
    Trans Am Ophthalmol Soc; 2009 Dec; 107():28-33. PubMed ID: 20126479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of Photoreceptors in Bietti Crystalline Dystrophy with CYP4V2 Mutations Using Adaptive Optics Scanning Laser Ophthalmoscopy.
    Miyata M; Ooto S; Ogino K; Gotoh N; Morooka S; Makiyama Y; Hasegawa T; Sugahara M; Hata M; Yamashiro K; Yoshimura N
    Am J Ophthalmol; 2016 Jan; 161():196-205.e1. PubMed ID: 26521715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies.
    Choi SS; Zawadzki RJ; Keltner JL; Werner JS
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2103-19. PubMed ID: 18436843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inexpensive and Open-Source Devices and Systems for Retinal Imaging.
    Nguyen HV; Nagata T; Mukai S
    Int Ophthalmol Clin; 2020; 60(1):35-45. PubMed ID: 31855894
    [No Abstract]   [Full Text] [Related]  

  • 48. In vivo high-resolution retinal imaging using adaptive optics.
    Seyedahmadi BJ; Vavvas D
    Semin Ophthalmol; 2010; 25(5-6):186-91. PubMed ID: 21090998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature.
    Britten-Jones AC; Thai L; Flanagan JPM; Bedggood PA; Edwards TL; Metha AB; Ayton LN
    Surv Ophthalmol; 2024; 69(1):51-66. PubMed ID: 37778667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptive optics scanning laser ophthalmoscope imaging: technology update.
    Merino D; Loza-Alvarez P
    Clin Ophthalmol; 2016; 10():743-55. PubMed ID: 27175057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoreceptor loss overlying congenital hypertrophy of the retinal pigment epithelium by optical coherence tomography.
    Shields CL; Materin MA; Walker C; Marr BP; Shields JA
    Ophthalmology; 2006 Apr; 113(4):661-5. PubMed ID: 16581426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems.
    Kiernan DF; Mieler WF; Hariprasad SM
    Am J Ophthalmol; 2010 Jan; 149(1):18-31. PubMed ID: 20103039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Case Report: Multimodal, Longitudinal Assessment of Retinal Structure and Function following Laser Retinal Injury.
    Wang Y; La TT; Mason M; Tuten WS; Roorda A
    Optom Vis Sci; 2023 Apr; 100(4):281-288. PubMed ID: 36856552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea.
    Kitaguchi Y; Fujikado T; Bessho K; Sakaguchi H; Gomi F; Yamaguchi T; Nakazawa N; Mihashi T; Tano Y
    Ophthalmology; 2008 Oct; 115(10):1771-7. PubMed ID: 18486223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of OCT-A in retinal disease management.
    Rodríguez FJ; Staurenghi G; Gale R;
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2019-2026. PubMed ID: 30175386
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.