These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23621356)

  • 1. Li-cycling properties of molten salt method prepared nano/submicrometer and micrometer-sized CuO for lithium batteries.
    Reddy MV; Yu C; Jiahuan F; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2013 May; 5(10):4361-6. PubMed ID: 23621356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries.
    Reddy MV; Prithvi G; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):680-90. PubMed ID: 24325322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy storage studies on InVO4 as high performance anode material for Li-ion batteries.
    Reddy MV; Wen BL; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7777-85. PubMed ID: 23869790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles.
    Hameed AS; Bahiraei H; Reddy MV; Shoushtari MZ; Vittal JJ; Ong CK; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10744-53. PubMed ID: 24912014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties.
    Liu H; Wang Y; Li H; Yang W; Zhou H
    Chemphyschem; 2010 Oct; 11(15):3273-80. PubMed ID: 20821793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling.
    Cherian CT; Zheng M; Reddy MV; Chowdari BV; Sow CH
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6054-60. PubMed ID: 23738585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray absorption spectroscopy and energy storage of Ni-doped cobalt nitride, (Ni(0.33)Co(0.67))N, prepared by a simple synthesis route.
    Das B; Reddy MV; Chowdari BV
    Nanoscale; 2013 Mar; 5(5):1961-6. PubMed ID: 23360912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Pulse Reverse Electrodeposition of Mesoporous Li
    Behboudi-Khiavi S; Javanbakht M; Mozaffari SA; Ghaemi M
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21552-21566. PubMed ID: 31124651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification Effect and Electrochemical Performance of LiOH-High Surface Activated Carbon as a Cathode Material in EDLC.
    Otgonbayar Z; Yang S; Kim IJ; Oh WC
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures.
    Zhu G; Xu H; Xiao Y; Liu Y; Yuan A; Shen X
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):744-51. PubMed ID: 22257081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of substrate temperature on morphology and electrochemical performance of radio frequency magnetron sputtered lithium nickel vanadate films used as negative electrodes for lithium microbatteries.
    Reddy MV; Pecquenard B; Vinatier P; Levasseur A
    J Phys Chem B; 2006 Mar; 110(9):4301-6. PubMed ID: 16509727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries.
    Xiao Y; Hao D; Chen H; Gong Z; Yang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1681-7. PubMed ID: 23379363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries.
    Khomane RB
    J Colloid Interface Sci; 2011 Apr; 356(1):369-72. PubMed ID: 21272892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling.
    Amaresh S; Kim GJ; Karthikeyan K; Aravindan V; Chung KY; Cho BW; Lee YS
    Phys Chem Chem Phys; 2012 Sep; 14(34):11904-9. PubMed ID: 22832971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw.
    Ryu DJ; Oh RG; Seo YD; Oh SY; Ryu KS
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10405-12. PubMed ID: 25821037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.