These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 23621453)
41. Auditory responses in the nucleus basalis of the pigeon. Maekawa M Hear Res; 1987; 27(3):231-7. PubMed ID: 3610851 [TBL] [Abstract][Full Text] [Related]
42. Neural mechanisms for spectral analysis in the auditory midbrain, thalamus, and cortex. Escabí MA; Read HL Int Rev Neurobiol; 2005; 70():207-52. PubMed ID: 16472636 [No Abstract] [Full Text] [Related]
43. Excitatory and inhibitory tonotopic bands in chinchilla inferior colliculus revealed by c-fos immuno-labeling. D'Alessandro LM; Harrison RV Hear Res; 2014 Oct; 316():122-8. PubMed ID: 25158304 [TBL] [Abstract][Full Text] [Related]
44. Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. Pérez-González D; Malmierca MS; Moore JM; Hernández O; Covey E J Neurophysiol; 2006 Feb; 95(2):823-36. PubMed ID: 16192332 [TBL] [Abstract][Full Text] [Related]
45. Coding of concurrent vocal signals by the auditory midbrain: effects of stimulus level and depth of modulation. Bodnar DA; Bass AH J Acoust Soc Am; 2001 Feb; 109(2):809-25. PubMed ID: 11248984 [TBL] [Abstract][Full Text] [Related]
46. Auditory and visual interactions between the superior and inferior colliculi in the ferret. Stitt I; Galindo-Leon E; Pieper F; Hollensteiner KJ; Engler G; Engel AK Eur J Neurosci; 2015 May; 41(10):1311-20. PubMed ID: 25645363 [TBL] [Abstract][Full Text] [Related]
47. Space and frequency are represented separately in auditory midbrain of the owl. Knudsen EI; Konishi M J Neurophysiol; 1978 Jul; 41(4):870-84. PubMed ID: 681991 [TBL] [Abstract][Full Text] [Related]
48. A neural map of auditory space in the owl. Knudsen EI; Konishi M Science; 1978 May; 200(4343):795-7. PubMed ID: 644324 [TBL] [Abstract][Full Text] [Related]
49. Coincidence detection in auditory neurons: a possible mechanism to enhance stimulus specificity in the grassfrog. Eggermont JJ; Epping WJ Hear Res; 1987; 30(2-3):219-30. PubMed ID: 3500160 [TBL] [Abstract][Full Text] [Related]
50. Peripheral auditory input to the midbrain limbic area and related structures. Le Moal M; Olds ME Brain Res; 1979 May; 167(1):1-17. PubMed ID: 455056 [TBL] [Abstract][Full Text] [Related]
51. Neurophysiological basis of directional hearing in amphibia. Pettigrew A; Chung SH; Anson M Nature; 1978 Mar; 272(5649):138-42. PubMed ID: 628442 [TBL] [Abstract][Full Text] [Related]
52. The tonotopic organization of the auditory thalamus of the squirrel monkey (Saimiri sciureus). Gross NB; Lifschitz WS; Anderson DJ Brain Res; 1974 Jan; 65(2):323-32. PubMed ID: 4214444 [No Abstract] [Full Text] [Related]
53. Auditory-responsive units in the midbrain vocal nuclei in the ring dove (Streptopelia risoria). Cheng MF; Havens MH Brain Res Bull; 1993; 30(5-6):711-5. PubMed ID: 8457918 [TBL] [Abstract][Full Text] [Related]
54. Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Eggermont JJ; Aertsen AM; Johannesma PI Hear Res; 1983 May; 10(2):167-90. PubMed ID: 6602799 [TBL] [Abstract][Full Text] [Related]
55. Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. Bigalke-Kunz B; Rübsamen R; Dörrscheidt GJ J Comp Physiol A; 1987 Aug; 161(2):255-65. PubMed ID: 3625575 [TBL] [Abstract][Full Text] [Related]
56. Temporal population code of concurrent vocal signals in the auditory midbrain. Bodnar DA; Holub AD; Land BR; Skovira J; Bass AH J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2001 Dec; 187(11):865-73. PubMed ID: 11866185 [TBL] [Abstract][Full Text] [Related]
57. Neuronal coding of azimuthal sound direction in the auditory midbrain of the pigeon. Lewald J Naturwissenschaften; 1988 Sep; 75(9):470-2. PubMed ID: 3226439 [No Abstract] [Full Text] [Related]
58. Strong energy component is more important than spectral selectivity in modeling responses of midbrain auditory neurons to wide-band environmental sounds. Chang TR; Marsalek P; Chiu TW Biosystems; 2022 Nov; 221():104752. PubMed ID: 36028002 [TBL] [Abstract][Full Text] [Related]
59. Representation of particle motion in the auditory midbrain of a developing anuran. Simmons AM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):681-9. PubMed ID: 25981910 [TBL] [Abstract][Full Text] [Related]
60. The neurochrome. An identity preserving representation of activity patterns from neural populations. Epping W; van den Boogaard H; Aertsen A; Eggermont J; Johannesma P Biol Cybern; 1984; 50(4):235-40. PubMed ID: 6095931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]