BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 23621571)

  • 1. Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.
    Aranko AS; Oeemig JS; Iwaï H
    FEBS J; 2013 Jul; 280(14):3256-69. PubMed ID: 23621571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein splicing and auto-cleavage of bacterial intein-like domains lacking a C'-flanking nucleophilic residue.
    Dassa B; Haviv H; Amitai G; Pietrokovski S
    J Biol Chem; 2004 Jul; 279(31):32001-7. PubMed ID: 15150275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein.
    Wu Q; Gao Z; Wei Y; Ma G; Zheng Y; Dong Y; Liu Y
    Biochem J; 2014 Jul; 461(2):247-55. PubMed ID: 24758175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification.
    Oeemig JS; Aranko AS; Djupsjöbacka J; Heinämäki K; Iwaï H
    FEBS Lett; 2009 May; 583(9):1451-6. PubMed ID: 19344715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative nucleophilic residues in intein catalysis of protein splicing.
    Qi X; Wang J; Meng Q; Liu XQ
    Protein Pept Lett; 2011 Dec; 18(12):1226-32. PubMed ID: 21707520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein trans-splicing and its use in structural biology: opportunities and limitations.
    Volkmann G; Iwaï H
    Mol Biosyst; 2010 Nov; 6(11):2110-21. PubMed ID: 20820635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS; Züger S; Buchinger E; Iwaï H
    PLoS One; 2009; 4(4):e5185. PubMed ID: 19365564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations.
    Dassa B; Amitai G; Caspi J; Schueler-Furman O; Pietrokovski S
    Biochemistry; 2007 Jan; 46(1):322-30. PubMed ID: 17198403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool.
    Ciragan A; Aranko AS; Tascon I; Iwaï H
    J Mol Biol; 2016 Nov; 428(23):4573-4588. PubMed ID: 27720988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein.
    Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    J Mol Biol; 2012 Aug; 421(1):85-99. PubMed ID: 22560994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A streamlined method for preparing split intein for NMR study.
    Lee YZ; Lee YT; Lin YJ; Chen YJ; Sue SC
    Protein Expr Purif; 2014 Jul; 99():106-12. PubMed ID: 24751877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semisynthesis of proteins using split inteins.
    Ludwig C; Schwarzer D; Zettler J; Garbe D; Janning P; Czeslik C; Mootz HD
    Methods Enzymol; 2009; 462():77-96. PubMed ID: 19632470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based engineering and comparison of novel split inteins for protein ligation.
    Aranko AS; Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    Mol Biosyst; 2014 May; 10(5):1023-34. PubMed ID: 24574026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular organization of inteins and C-terminal autocatalytic domains.
    Pietrokovski S
    Protein Sci; 1998 Jan; 7(1):64-71. PubMed ID: 9514260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins.
    Beyer HM; Mikula KM; Li M; Wlodawer A; Iwaï H
    FEBS J; 2020 May; 287(9):1886-1898. PubMed ID: 31665813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Protein splicing].
    Starokadomskiĭ PL
    Mol Biol (Mosk); 2007; 41(2):314-30. PubMed ID: 17514899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.
    Garbe D; Thiel IV; Mootz HD
    J Pept Sci; 2010 Oct; 16(10):575-81. PubMed ID: 20862725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of protein splicing in trans mediated by a semisynthetic split intein.
    Lew BM; Mills KV; Paulus H
    Biopolymers; 1999; 51(5):355-62. PubMed ID: 10685046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.