These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 23621616)

  • 41. Strong coupling between mid-infrared localized plasmons and phonons.
    Wan W; Yang X; Gao J
    Opt Express; 2016 May; 24(11):12367-74. PubMed ID: 27410151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Observation of Dirac plasmons in a topological insulator.
    Di Pietro P; Ortolani M; Limaj O; Di Gaspare A; Giliberti V; Giorgianni F; Brahlek M; Bansal N; Koirala N; Oh S; Calvani P; Lupi S
    Nat Nanotechnol; 2013 Aug; 8(8):556-60. PubMed ID: 23872838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures.
    Hu H; Guo X; Hu D; Sun Z; Yang X; Dai Q
    Adv Sci (Weinh); 2018 Aug; 5(8):1800175. PubMed ID: 30128236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene plasmonics for tunable terahertz metamaterials.
    Ju L; Geng B; Horng J; Girit C; Martin M; Hao Z; Bechtel HA; Liang X; Zettl A; Shen YR; Wang F
    Nat Nanotechnol; 2011 Sep; 6(10):630-4. PubMed ID: 21892164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-Lived Domain Wall Plasmons in Gapped Bilayer Graphene.
    Hasdeo EH; Song JCW
    Nano Lett; 2017 Dec; 17(12):7252-7257. PubMed ID: 29164888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling of plasmon and photon modes in a graphene-based multilayer structure.
    Ding L; Xu W; Zhao C; Wang S; Liu H
    Opt Lett; 2015 Oct; 40(19):4524-7. PubMed ID: 26421572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mid-infrared Plasmonic Circular Dichroism Generated by Graphene Nanodisk Assemblies.
    Kong XT; Zhao R; Wang Z; Govorov AO
    Nano Lett; 2017 Aug; 17(8):5099-5105. PubMed ID: 28715228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model.
    Tene T; Guevara M; Viteri E; Maldonado A; Pisarra M; Sindona A; Vacacela Gomez C; Bellucci S
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unconventional plasmonic sensitization of graphene in mid-infrared.
    Paria D; Vadakkumbatt V; Ravindra P; Avasthi S; Ghosh A
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33873164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon modes in graphene: status and prospect.
    Politano A; Chiarello G
    Nanoscale; 2014 Oct; 6(19):10927-40. PubMed ID: 25130215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-dimensional gap plasmons for enhanced light-graphene interactions.
    Kim Y; Yu S; Park N
    Sci Rep; 2017 Feb; 7():43333. PubMed ID: 28240230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InN.
    Askari S; Mariotti D; Stehr JE; Benedikt J; Keraudy J; Helmersson U
    Nano Lett; 2018 Sep; 18(9):5681-5687. PubMed ID: 30137994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonlinear Atom-Plasmon Interactions Enabled by Nanostructured Graphene.
    Cox JD; García de Abajo FJ
    Phys Rev Lett; 2018 Dec; 121(25):257403. PubMed ID: 30608798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
    Koch RJ; Fryska S; Ostler M; Endlich M; Speck F; Hänsel T; Schaefer JA; Seyller T
    Phys Rev Lett; 2016 Mar; 116(10):106802. PubMed ID: 27015502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of edge on graphene plasmons as revealed by infrared nanoimaging.
    Xu Q; Ma T; Danesh M; Shivananju BN; Gan S; Song J; Qiu CW; Cheng HM; Ren W; Bao Q
    Light Sci Appl; 2017 Feb; 6(2):e16204. PubMed ID: 30167226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Plasmon Thermo-Optical Switching in Graphene.
    Cox JD; García de Abajo FJ
    Nano Lett; 2019 Jun; 19(6):3743-3750. PubMed ID: 31117754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.