These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 23621759)
1. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. Venta K; Shemer G; Puster M; Rodríguez-Manzo JA; Balan A; Rosenstein JK; Shepard K; Drndić M ACS Nano; 2013 May; 7(5):4629-36. PubMed ID: 23621759 [TBL] [Abstract][Full Text] [Related]
2. Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. Shekar S; Niedzwiecki DJ; Chien CC; Ong P; Fleischer DA; Lin J; Rosenstein JK; Drndić M; Shepard KL Nano Lett; 2016 Jul; 16(7):4483-9. PubMed ID: 27332998 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores. Si W; Yang H; Sha J; Zhang Y; Chen Y Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188 [TBL] [Abstract][Full Text] [Related]
4. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores. Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444 [TBL] [Abstract][Full Text] [Related]
5. Single-Stranded DNA Translocation Recordings through Solid-State Nanopores on Glass Chips at 10 MHz Measurement Bandwidth. Chien CC; Shekar S; Niedzwiecki DJ; Shepard KL; Drndić M ACS Nano; 2019 Sep; 13(9):10545-10554. PubMed ID: 31449393 [TBL] [Abstract][Full Text] [Related]
6. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. Nelson EM; Li H; Timp G ACS Nano; 2014 Jun; 8(6):5484-93. PubMed ID: 24840912 [TBL] [Abstract][Full Text] [Related]
7. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Briggs K; Kwok H; Tabard-Cossa V Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682 [TBL] [Abstract][Full Text] [Related]
8. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides. Goto Y; Matsui K; Yanagi I; Takeda KI Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729 [TBL] [Abstract][Full Text] [Related]
9. Nucleotide discrimination with DNA immobilized in the MspA nanopore. Manrao EA; Derrington IM; Pavlenok M; Niederweis M; Gundlach JH PLoS One; 2011; 6(10):e25723. PubMed ID: 21991340 [TBL] [Abstract][Full Text] [Related]
10. Detection of single analyte and environmental samples with silicon nitride nanopores: Antarctic dirt particulates and DNA in artificial seawater. Niedzwiecki DJ; Chou YC; Xia Z; Thei F; Drndić M Rev Sci Instrum; 2020 Mar; 91(3):031301. PubMed ID: 32259993 [TBL] [Abstract][Full Text] [Related]
11. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores. Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536 [TBL] [Abstract][Full Text] [Related]
12. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection. Deng Y; Huang Q; Zhao Y; Zhou D; Ying C; Wang D Nanotechnology; 2017 Jan; 28(4):045302. PubMed ID: 27981944 [TBL] [Abstract][Full Text] [Related]
13. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations. Chou YC; Chen J; Lin CY; Drndić M J Chem Phys; 2021 Mar; 154(10):105102. PubMed ID: 33722020 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Skinner GM; van den Hout M; Broekmans O; Dekker C; Dekker NH Nano Lett; 2009 Aug; 9(8):2953-60. PubMed ID: 19537802 [TBL] [Abstract][Full Text] [Related]
15. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Akahori R; Yanagi I; Goto Y; Harada K; Yokoi T; Takeda KI Sci Rep; 2017 Aug; 7(1):9073. PubMed ID: 28831056 [TBL] [Abstract][Full Text] [Related]
16. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034 [TBL] [Abstract][Full Text] [Related]
17. DNA Translocation in Nanometer Thick Silicon Nanopores. Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079 [TBL] [Abstract][Full Text] [Related]
18. Slow DNA transport through nanopores in hafnium oxide membranes. Larkin J; Henley R; Bell DC; Cohen-Karni T; Rosenstein JK; Wanunu M ACS Nano; 2013 Nov; 7(11):10121-10128. PubMed ID: 24083444 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Yanagi I; Ishida T; Fujisaki K; Takeda K Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588 [TBL] [Abstract][Full Text] [Related]
20. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform. Pitchford WH; Kim HJ; Ivanov AP; Kim HM; Yu JS; Leatherbarrow RJ; Albrecht T; Kim KB; Edel JB ACS Nano; 2015 Feb; 9(2):1740-8. PubMed ID: 25635821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]