BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 23622132)

  • 1. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma.
    Zheng L; Xue J; Jaffee EM; Habtezion A
    Gastroenterology; 2013 Jun; 144(6):1230-40. PubMed ID: 23622132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex role for the immune system in initiation and progression of pancreatic cancer.
    Inman KS; Francis AA; Murray NR
    World J Gastroenterol; 2014 Aug; 20(32):11160-81. PubMed ID: 25170202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies.
    Huang H; Lu W; Zhang X; Pan J; Cao F; Wen L
    Cell Oncol (Dordr); 2024 Apr; 47(2):383-396. PubMed ID: 37721678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal.
    Mundry CS; Eberle KC; Singh PK; Hollingsworth MA; Mehla K
    Biochim Biophys Acta Rev Cancer; 2020 Aug; 1874(1):188387. PubMed ID: 32579889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational combinations of immunotherapy for pancreatic ductal adenocarcinoma.
    Blair AB; Zheng L
    Chin Clin Oncol; 2017 Jun; 6(3):31. PubMed ID: 28705008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Immune System and the Circadian Rhythm in the Pathogenesis of Chronic Pancreatitis: Establishing a Personalized Signature for Improving the Effect of Immunotherapies for Chronic Pancreatitis.
    Kessler A; Weksler-Zangen S; Ilan Y
    Pancreas; 2020 Sep; 49(8):1024-1032. PubMed ID: 32833942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice.
    Perusina Lanfranca M; Zhang Y; Girgis A; Kasselman S; Lazarus J; Kryczek I; Delrosario L; Rhim A; Koneva L; Sartor M; Sun L; Halbrook C; Nathan H; Shi J; Crawford HC; Pasca di Magliano M; Zou W; Frankel TL
    Gastroenterology; 2020 Apr; 158(5):1417-1432.e11. PubMed ID: 31843590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma.
    Schmiechen ZC; Stromnes IM
    Front Immunol; 2020; 11():613815. PubMed ID: 33584701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IFN-γ Promotes Epithelial-Mesenchymal Transition and the Expression of PD-L1 in Pancreatic Cancer.
    Imai D; Yoshizumi T; Okano S; Itoh S; Ikegami T; Harada N; Aishima S; Oda Y; Maehara Y
    J Surg Res; 2019 Aug; 240():115-123. PubMed ID: 30927618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity.
    Stromnes IM; Brockenbrough JS; Izeradjene K; Carlson MA; Cuevas C; Simmons RM; Greenberg PD; Hingorani SR
    Gut; 2014 Nov; 63(11):1769-81. PubMed ID: 24555999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Pancreatic Infiltrating Innate Immune Cells in Acute Pancreatitis.
    Peng C; Li Z; Yu X
    Int J Med Sci; 2021; 18(2):534-545. PubMed ID: 33390823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The similarity of Type 1 autoimmune pancreatitis to pancreatic ductal adenocarcinoma with significant IgG4-positive plasma cell infiltration.
    Fukui Y; Uchida K; Sumimoto K; Kusuda T; Miyoshi H; Koyabu M; Ikeura T; Sakaguchi Y; Shimatani M; Fukui T; Matsushita M; Takaoka M; Nishio A; Shikata N; Sakaida N; Uemura Y; Satoi S; Kwon AH; Okazaki K
    J Gastroenterol; 2013 Jun; 48(6):751-61. PubMed ID: 23053421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel and emerging innate immune therapeutic targets for pancreatic cancer.
    Wang L; Shureiqi I; Stroehlein JR; Wei D
    Expert Opin Ther Targets; 2018 Dec; 22(12):977-981. PubMed ID: 30332892
    [No Abstract]   [Full Text] [Related]  

  • 14. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and Opportunities for Pancreatic Cancer Immunotherapy.
    Bear AS; Vonderheide RH; O'Hara MH
    Cancer Cell; 2020 Dec; 38(6):788-802. PubMed ID: 32946773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma.
    Murakami S; Shahbazian D; Surana R; Zhang W; Chen H; Graham GT; White SM; Weiner LM; Yi C
    Oncogene; 2017 Mar; 36(9):1232-1244. PubMed ID: 27546622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice.
    Guerra C; Schuhmacher AJ; Cañamero M; Grippo PJ; Verdaguer L; Pérez-Gallego L; Dubus P; Sandgren EP; Barbacid M
    Cancer Cell; 2007 Mar; 11(3):291-302. PubMed ID: 17349585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects.
    Nsingwane Z; Candy G; Devar J; Omoshoro-Jones J; Smith M; Nweke E
    Mol Biol Rep; 2020 Aug; 47(8):6269-6280. PubMed ID: 32661873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immune network in pancreatic cancer development and progression.
    Wörmann SM; Diakopoulos KN; Lesina M; Algül H
    Oncogene; 2014 Jun; 33(23):2956-67. PubMed ID: 23851493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Clinicopathologic characteristics of fibrous mass-forming chronic pancreatitis].
    Chang XJ; Chen Y; Zhang J; Shi M; Wang Y; Zhu MH
    Zhonghua Bing Li Xue Za Zhi; 2013 Jun; 42(6):366-71. PubMed ID: 24060068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.