These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23622246)

  • 1. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
    Stinson BM; Nager AR; Glynn SE; Schmitz KR; Baker TA; Sauer RT
    Cell; 2013 Apr; 153(3):628-39. PubMed ID: 23622246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.
    Glynn SE; Martin A; Nager AR; Baker TA; Sauer RT
    Cell; 2009 Nov; 139(4):744-56. PubMed ID: 19914167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX.
    Stinson BM; Baytshtok V; Schmitz KR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2015 May; 22(5):411-6. PubMed ID: 25866879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity.
    Bell TA; Baker TA; Sauer RT
    Biochemistry; 2018 Dec; 57(49):6787-6796. PubMed ID: 30418765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
    Hersch GL; Burton RE; Bolon DN; Baker TA; Sauer RT
    Cell; 2005 Jul; 121(7):1017-27. PubMed ID: 15989952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; Montaño SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP.
    Li DH; Chung YS; Gloyd M; Joseph E; Ghirlando R; Wright GD; Cheng YQ; Maurizi MR; Guarné A; Ortega J
    Chem Biol; 2010 Sep; 17(9):959-69. PubMed ID: 20851345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric nucleotide transactions of the HslUV protease.
    Yakamavich JA; Baker TA; Sauer RT
    J Mol Biol; 2008 Jul; 380(5):946-57. PubMed ID: 18582897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.