These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1064 related articles for article (PubMed ID: 23622249)

  • 21. Extensive analysis of the 13q14 region in human prostate tumors: DNA analysis and quantitative expression of genes lying in the interval of deletion.
    Latil A; Chêne L; Mangin P; Fournier G; Berthon P; Cussenot O
    Prostate; 2003 Sep; 57(1):39-50. PubMed ID: 12886522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype.
    Williams K; Fernandez S; Stien X; Ishii K; Love HD; Lau YF; Roberts RL; Hayward SW
    Prostate; 2005 Jun; 63(4):369-84. PubMed ID: 15937962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A basal stem cell signature identifies aggressive prostate cancer phenotypes.
    Smith BA; Sokolov A; Uzunangelov V; Baertsch R; Newton Y; Graim K; Mathis C; Cheng D; Stuart JM; Witte ON
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6544-52. PubMed ID: 26460041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Siah2-HIF-FoxA2 axis in prostate cancer – new markers and therapeutic opportunities.
    Qi J; Pellecchia M; Ronai ZA
    Oncotarget; 2010 Sep; 1(5):379-85. PubMed ID: 21037926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation.
    Alshalalfa M; Abou-Ouf H; Davicioni E; Karnes RJ; Alhajj R; Bismar TA
    J Cancer Res Clin Oncol; 2021 Aug; 147(8):2223-2231. PubMed ID: 33864110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reorganization of the 3D Genome Pinpoints Noncoding Drivers of Primary Prostate Tumors.
    Hawley JR; Zhou S; Arlidge C; Grillo G; Kron KJ; Hugh-White R; van der Kwast TH; Fraser M; Boutros PC; Bristow RG; Lupien M
    Cancer Res; 2021 Dec; 81(23):5833-5848. PubMed ID: 34642184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis.
    Simmonds P; Loomis E; Curry E
    Genome Med; 2017 Jun; 9(1):54. PubMed ID: 28592290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer.
    Bismar TA; Yoshimoto M; Vollmer RT; Duan Q; Firszt M; Corcos J; Squire JA
    BJU Int; 2011 Feb; 107(3):477-85. PubMed ID: 20590547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer.
    Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA
    Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-β.
    Jachetti E; Rigoni A; Bongiovanni L; Arioli I; Botti L; Parenza M; Cancila V; Chiodoni C; Festinese F; Bellone M; Tardanico R; Tripodo C; Colombo MP
    Mol Cancer Ther; 2017 Feb; 16(2):365-375. PubMed ID: 27980106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced expression of the DNA glycosylase gene MUTYH is associated with an increased number of somatic mutations via a reduction in the DNA repair capacity in prostate adenocarcinoma.
    Shinmura K; Kato H; Kawanishi Y; Yoshimura K; Igarashi H; Goto M; Tao H; Inoue Y; Sugiyama T; Furuse H; Ozono S; Sugimura H
    Mol Carcinog; 2017 Feb; 56(2):781-788. PubMed ID: 27253753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer.
    Chiaverotti T; Couto SS; Donjacour A; Mao JH; Nagase H; Cardiff RD; Cunha GR; Balmain A
    Am J Pathol; 2008 Jan; 172(1):236-46. PubMed ID: 18156212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimum altered regions in early prostate cancer progression identified by high resolution whole genome tiling path BAC array comparative hybridization.
    Watson SK; Woolcock BW; Fee JN; Bainbridge TC; Webber D; Kinahan TJ; Lam WL; Vielkind JR
    Prostate; 2009 Jun; 69(9):961-75. PubMed ID: 19267368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Esophageal Adenocarcinoma Risk Using Somatic Chromosome Alterations in Longitudinal Samples in Barrett's Esophagus.
    Li X; Paulson TG; Galipeau PC; Sanchez CA; Liu K; Kuhner MK; Maley CC; Self SG; Vaughan TL; Reid BJ; Blount PL
    Cancer Prev Res (Phila); 2015 Sep; 8(9):845-56. PubMed ID: 26130253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications.
    Ramnarine VR; Alshalalfa M; Mo F; Nabavi N; Erho N; Takhar M; Shukin R; Brahmbhatt S; Gawronski A; Kobelev M; Nouri M; Lin D; Tsai H; Lotan TL; Karnes RJ; Rubin MA; Zoubeidi A; Gleave ME; Sahinalp C; Wyatt AW; Volik SV; Beltran H; Davicioni E; Wang Y; Collins CC
    Gigascience; 2018 Jun; 7(6):. PubMed ID: 29757368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneously detection of genomic and expression alterations in prostate cancer using cDNA microarray.
    Jiang M; Li M; Fu X; Huang Y; Qian H; Sun R; Mao Y; Xie Y; Li Y
    Prostate; 2008 Oct; 68(14):1496-509. PubMed ID: 18366025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications.
    Wang JC; Bégin LR; Bérubé NG; Chevalier S; Aprikian AG; Gourdeau H; Chevrette M
    Clin Cancer Res; 2007 Apr; 13(8):2354-61. PubMed ID: 17406028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ONECUT2 is a driver of neuroendocrine prostate cancer.
    Guo H; Ci X; Ahmed M; Hua JT; Soares F; Lin D; Puca L; Vosoughi A; Xue H; Li E; Su P; Chen S; Nguyen T; Liang Y; Zhang Y; Xu X; Xu J; Sheahan AV; Ba-Alawi W; Zhang S; Mahamud O; Vellanki RN; Gleave M; Bristow RG; Haibe-Kains B; Poirier JT; Rudin CM; Tsao MS; Wouters BG; Fazli L; Feng FY; Ellis L; van der Kwast T; Berlin A; Koritzinsky M; Boutros PC; Zoubeidi A; Beltran H; Wang Y; He HH
    Nat Commun; 2019 Jan; 10(1):278. PubMed ID: 30655535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of genomic alterations through coregulation analysis of closely linked genes: a frequent gain in 17q25.3 in prostate cancer.
    Bermudo R; Abia D; Benitez D; Carrió A; Vilella R; Ortiz AR; Thomson TM; Fernández PL
    Ann N Y Acad Sci; 2010 Oct; 1210():17-24. PubMed ID: 20973795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.