These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23622441)

  • 1. Optical detection of meat spoilage using fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Alfano RR
    Appl Spectrosc; 2013 Feb; 67(2):210-3. PubMed ID: 23622441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy.
    Oto N; Oshita S; Makino Y; Kawagoe Y; Sugiyama J; Yoshimura M
    Meat Sci; 2013 Mar; 93(3):579-85. PubMed ID: 23273467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and quantification of bacterial spoilage in milk and pork meat using MALDI-TOF-MS and multivariate analysis.
    Nicolaou N; Xu Y; Goodacre R
    Anal Chem; 2012 Jul; 84(14):5951-8. PubMed ID: 22698768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous front-face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study the effects of cooking time on meat.
    Sahar A; Boubellouta T; Portanguen S; Kondjoyan A; Dufour E
    J Food Sci; 2009; 74(9):E534-9. PubMed ID: 20492116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages.
    Ammor S; Yaakoubi K; Chevallier I; Dufour E
    J Microbiol Methods; 2004 Nov; 59(2):271-81. PubMed ID: 15369863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on determination of carbaryl content in duck meat based on synchronous fluorescence spectroscopy].
    Xiao HB; Liu MH; Yuan HC; Xu J; Zhao JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):3058-62. PubMed ID: 23387179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and characterization of beef muscles using front-face fluorescence spectroscopy.
    Sahar A; Dufour É
    Meat Sci; 2015 Feb; 100():69-72. PubMed ID: 25306513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarkers spectral subspace for cancer detection.
    Sun Y; Pu Y; Yang Y; Alfano RR
    J Biomed Opt; 2012 Oct; 17(10):107005. PubMed ID: 23052564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring.
    Sivabalan S; Vedeswari CP; Jayachandran S; Koteeswaran D; Pravda C; Aruna PR; Ganesan S
    J Biomed Opt; 2010; 15(1):017010. PubMed ID: 20210484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence properties of carba nicotinamide adenine dinucleotide for glucose sensing.
    von Ketteler A; Herten DP; Petrich W
    Chemphyschem; 2012 Apr; 13(5):1302-6. PubMed ID: 22337358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the capability of Fourier transform infrared spectroscopy in tandem with chemometric analysis for predicting poultry meat spoilage.
    Rahman UU; Sahar A; Pasha I; Rahman SU; Ishaq A
    PeerJ; 2018; 6():e5376. PubMed ID: 30123708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiway chemometric decomposition of EEM of fluorescence of CdTe quantum dots obtained as function of pH.
    Leitão JM; Gonçalves H; Mendonça C; da Silva JC
    Anal Chim Acta; 2008 Nov; 628(2):143-54. PubMed ID: 18929002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring quality loss of pasteurized skim milk using visible and short wavelength near-infrared spectroscopy and multivariate analysis.
    Al-Qadiri HM; Lin M; Al-Holy MA; Cavinato AG; Rasco BA
    J Dairy Sci; 2008 Mar; 91(3):950-8. PubMed ID: 18292250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet excitation fluorescence spectroscopy: a noninvasive method for the measurement of redox changes in ischemic myocutaneous flaps.
    Cordeiro PG; Kirschner RE; Hu QY; Chiao JJ; Savage H; Alfano RR; Hoffman LA; Hidalgo DA
    Plast Reconstr Surg; 1995 Sep; 96(3):673-80. PubMed ID: 7638292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.