These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 2362246)
1. Finite element analysis of six endosseous implants. Rieger MR; Mayberry M; Brose MO J Prosthet Dent; 1990 Jun; 63(6):671-6. PubMed ID: 2362246 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Clelland NL; Ismail YH; Zaki HS; Pipko D Int J Oral Maxillofac Implants; 1991; 6(4):391-8. PubMed ID: 1820307 [TBL] [Abstract][Full Text] [Related]
3. [Bone resorption at the entry of osseointegrated implants--a biomechanical phenomenon. Finite element study]. Mailath G; Stoiber B; Watzek G; Matejka M Z Stomatol; 1989 Jun; 86(4):207-16. PubMed ID: 2638071 [TBL] [Abstract][Full Text] [Related]
4. A finite element survey of eleven endosseous implants. Rieger MR; Adams WK; Kinzel GL J Prosthet Dent; 1990 Apr; 63(4):457-65. PubMed ID: 2184232 [TBL] [Abstract][Full Text] [Related]
5. Comparison of stress distribution around vertical and angled implants with finite-element analysis. Canay S; Hersek N; Akpinar I; Aşik Z Quintessence Int; 1996 Sep; 27(9):591-8. PubMed ID: 9180415 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. Bozkaya D; Muftu S; Muftu A J Prosthet Dent; 2004 Dec; 92(6):523-30. PubMed ID: 15583556 [TBL] [Abstract][Full Text] [Related]
7. Effects of different fixture geometries on the stress distribution in mandibular peri-implant structures: a 3-dimensional finite element analysis. Degerliyurt K; Simsek B; Erkmen E; Eser A Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Aug; 110(2):e1-11. PubMed ID: 20598590 [TBL] [Abstract][Full Text] [Related]
8. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Sütpideler M; Eckert SE; Zobitz M; An KN Int J Oral Maxillofac Implants; 2004; 19(6):819-25. PubMed ID: 15623056 [TBL] [Abstract][Full Text] [Related]
9. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026 [TBL] [Abstract][Full Text] [Related]
10. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. Quaresma SE; Cury PR; Sendyk WR; Sendyk C J Oral Implantol; 2008; 34(1):1-6. PubMed ID: 18390236 [TBL] [Abstract][Full Text] [Related]
11. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. Baggi L; Pastore S; Di Girolamo M; Vairo G J Prosthet Dent; 2013 Jan; 109(1):9-21. PubMed ID: 23328192 [TBL] [Abstract][Full Text] [Related]
12. Mechanical response to functional loading around the threads of retromolar endosseous implants utilized for orthodontic anchorage: coordinated histomorphometric and finite element analysis. Chen J; Esterle M; Roberts WE Int J Oral Maxillofac Implants; 1999; 14(2):282-9. PubMed ID: 10212547 [TBL] [Abstract][Full Text] [Related]
13. Role of the finite element model in dental implants. DeTolla DH; Andreana S; Patra A; Buhite R; Comella B J Oral Implantol; 2000; 26(2):77-81. PubMed ID: 11831334 [TBL] [Abstract][Full Text] [Related]
14. Finite element analysis to determine implant preload. Lang LA; Kang B; Wang RF; Lang BR J Prosthet Dent; 2003 Dec; 90(6):539-46. PubMed ID: 14668754 [TBL] [Abstract][Full Text] [Related]
15. The experimental verification of the efficacy of finite element modeling to dental implant systems. Baiamonte T; Abbate MF; Pizzarello F; Lozada J; James R J Oral Implantol; 1996; 22(2):104-10. PubMed ID: 9151632 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Satoh T; Maeda Y; Komiyama Y Int J Oral Maxillofac Implants; 2005; 20(4):533-9. PubMed ID: 16161737 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of stresses occurring on three different zirconia dental implants: three-dimensional finite element analysis. Caglar A; Bal BT; Aydin C; Yilmaz H; Ozkan S Int J Oral Maxillofac Implants; 2010; 25(1):95-103. PubMed ID: 20209191 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental implants with bone: three-dimensional numeric analysis. Fuh LJ; Hsu JT; Huang HL; Chen MY; Shen YW Int J Oral Maxillofac Implants; 2013; 28(2):e64-71. PubMed ID: 23527370 [TBL] [Abstract][Full Text] [Related]
19. Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis. Cehreli MC; Akça K; Iplikçioğlu H Clin Oral Implants Res; 2004 Aug; 15(4):481-9. PubMed ID: 15248884 [TBL] [Abstract][Full Text] [Related]
20. Investigation of influence of different implant size and placement on stress distribution with 3-dimensional finite element analysis. Balkaya MC Implant Dent; 2014 Dec; 23(6):716-22. PubMed ID: 25290280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]