These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23622542)

  • 1. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
    Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM
    Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between erythrocytes deformability and size: a study using a microchannel based cell analyzer.
    Bransky A; Korin N; Nemirovski Y; Dinnar U
    Microvasc Res; 2007 Jan; 73(1):7-13. PubMed ID: 17123552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting cells by size, shape and deformability.
    Beech JP; Holm SH; Adolfsson K; Tegenfeldt JO
    Lab Chip; 2012 Mar; 12(6):1048-51. PubMed ID: 22327631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD
    Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microfluidic techniques for single-cell biophysical characterization.
    Zheng Y; Nguyen J; Wei Y; Sun Y
    Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum.
    Guo Q; Reiling SJ; Rohrbach P; Ma H
    Lab Chip; 2012 Mar; 12(6):1143-50. PubMed ID: 22318405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Gifford SC; Bitensky MW
    Lab Chip; 2006 Jul; 6(7):914-20. PubMed ID: 16804596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability.
    Shin S; Hou JX; Suh JS; Singh M
    Clin Hemorheol Microcirc; 2007; 37(4):319-28. PubMed ID: 17942984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new dimensionless index for evaluating cell stiffness-based deformability in microchannel.
    Tsai CH; Sakuma S; Arai F; Kaneko M
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1187-95. PubMed ID: 24658243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel.
    Lee SS; Yim Y; Ahn KH; Lee SJ
    Biomed Microdevices; 2009 Oct; 11(5):1021-7. PubMed ID: 19434498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscope-based label-free microfluidic cytometry.
    Su X; Kirkwood SE; Gupta M; Marquez-Curtis L; Qiu Y; Janowska-Wieczorek A; Rozmus W; Tsui YY
    Opt Express; 2011 Jan; 19(1):387-98. PubMed ID: 21263578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic technique to probe cell deformability.
    Hoelzle DJ; Varghese BA; Chan CK; Rowat AC
    J Vis Exp; 2014 Sep; (91):e51474. PubMed ID: 25226269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability.
    Sakuma S; Kuroda K; Tsai CH; Fukui W; Arai F; Kaneko M
    Lab Chip; 2014 Mar; 14(6):1135-41. PubMed ID: 24463842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.