BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 23622556)

  • 1. The isolation of fibrinogen monomer dramatically influences fibrin polymerization.
    Huang L; Lord ST
    Thromb Res; 2013 Jun; 131(6):e258-63. PubMed ID: 23622556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does topology drive fiber polymerization?
    Huang L; Hsiao JP; Powierza C; Taylor RM; Lord ST
    Biochemistry; 2014 Dec; 53(49):7824-34. PubMed ID: 25419972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrinopeptide A release is necessary for effective B:b interactions in polymerisation of variant fibrinogens with impaired A:a interactions.
    Soya K; Terasawa F; Okumura N
    Thromb Haemost; 2013 Feb; 109(2):221-8. PubMed ID: 23238100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of recombinant Bbeta15C and Bbeta15A fibrinogens demonstrates that Bbeta15G residue plays important roles in FPB release and in lateral aggregation of protofibrils.
    Hirota-Kawadobora M; Kani S; Terasawa F; Fujihara N; Yamauchi K; Tozuka M; Okumura N
    J Thromb Haemost; 2005 May; 3(5):983-90. PubMed ID: 15869595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism.
    Mullin JL; Gorkun OV; Lord ST
    Biochemistry; 2000 Aug; 39(32):9843-9. PubMed ID: 10933802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of thrombin-catalyzed fibrin polymerization and factor XIIIa-catalyzed cross-linking of fibrin among three recombinant variant fibrinogens, gamma 275C, gamma 275H, and gamma 275A.
    Hirota-Kawadobora M; Terasawa F; Suzuki T; Tozuka M; Sano K; Okumura N
    J Thromb Haemost; 2004 Aug; 2(8):1359-67. PubMed ID: 15304042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of fibrin. A light scattering study.
    Hantgan RR; Hermans J
    J Biol Chem; 1979 Nov; 254(22):11272-81. PubMed ID: 500644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen.
    Gorkun OV; Veklich YI; Weisel JW; Lord ST
    Blood; 1997 Jun; 89(12):4407-14. PubMed ID: 9192765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A; Di Cera E
    Biochemistry; 1996 Apr; 35(14):4417-26. PubMed ID: 8605191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers.
    Langer BG; Weisel JW; Dinauer PA; Nagaswami C; Bell WR
    J Biol Chem; 1988 Oct; 263(29):15056-63. PubMed ID: 3170575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers.
    Medved' L; Ugarova T; Veklich Y; Lukinova N; Weisel J
    J Mol Biol; 1990 Dec; 216(3):503-9. PubMed ID: 2258925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant fibrinogen, gamma275Arg-->Cys, exhibits formation of disulfide bond with cysteine and severely impaired D:D interactions.
    Ishikawa S; Hirota-Kawadobora M; Tozuka M; Ishii K; Terasawa F; Okumura N
    J Thromb Haemost; 2004 Mar; 2(3):468-75. PubMed ID: 15009465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of A alpha 251 fibrinogen: the alpha C domain has a role in polymerization, albeit more subtle than anticipated from the analogous proteolytic fragment X.
    Gorkun OV; Henschen-Edman AH; Ping LF; Lord ST
    Biochemistry; 1998 Nov; 37(44):15434-41. PubMed ID: 9799505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered fibrinogen variant AαQ328,366P does not polymerise normally, but retains the ability to form α cross-links.
    Park R; Ping L; Song J; Seo JY; Choi TY; Choi JR; Gorkun OV; Lord ST
    Thromb Haemost; 2013 Feb; 109(2):199-206. PubMed ID: 23224113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study of fibrin polymerization with monoclonal antibodies.
    Lugovskoi EV; Makogonenko EM; Chudnovets VS; Derzskaya SG; Gogolinskaya GK; Kolesnikova IN; Bukhanevich AM; Sitak IN; Lyashko ED; Komissarenko SV
    Biomed Sci; 1991; 2(3):249-56. PubMed ID: 1751757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrinogen and fibrin polymerization: appraisal of the binding events that accompany fibrin generation and fibrin clot assembly.
    Mosesson MW
    Blood Coagul Fibrinolysis; 1997 Jul; 8(5):257-67. PubMed ID: 9282789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant BbetaArg14His fibrinogen implies participation of N-terminus of Bbeta chain in desA fibrin polymerization.
    Moen JL; Gorkun OV; Weisel JW; Lord ST
    Blood; 2003 Oct; 102(7):2466-71. PubMed ID: 12805063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thrombin-fibrinogen interaction.
    Scheraga HA
    Biophys Chem; 2004 Dec; 112(2-3):117-30. PubMed ID: 15572239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization.
    Veklich YI; Gorkun OV; Medved LV; Nieuwenhuizen W; Weisel JW
    J Biol Chem; 1993 Jun; 268(18):13577-85. PubMed ID: 8514790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.