BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23622983)

  • 1. Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration.
    Shinde RN; Pandey AK; Acharya R; Guin R; Das SK; Rajurkar NS; Pujari PK
    Water Res; 2013 Jun; 47(10):3497-506. PubMed ID: 23622983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-complexed adsorptive membrane for As(V) species in water.
    Shinde RN; Das S; Acharya R; Rajurkar NS; Pandey AK
    J Hazard Mater; 2012 Sep; 233-234():131-9. PubMed ID: 22835769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems.
    Gupta A; Yunus M; Sankararamakrishnan N
    Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.
    Qi J; Zhang G; Li H
    Bioresour Technol; 2015 Oct; 193():243-9. PubMed ID: 26141284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent.
    Boddu VM; Abburi K; Talbott JL; Smith ED; Haasch R
    Water Res; 2008 Feb; 42(3):633-42. PubMed ID: 17822735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extractive fixed-site polymer sorbent for selective boron removal from natural water.
    Thakur N; Kumar SA; Shinde RN; Pandey AK; Kumar SD; Reddy AV
    J Hazard Mater; 2013 Sep; 260():1023-31. PubMed ID: 23892170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents.
    Elwakeel KZ; Guibal E
    Carbohydr Polym; 2015 Dec; 134():190-204. PubMed ID: 26428116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel, bio-based, photoactive arsenic sorbent: TiO₂-impregnated chitosan bead.
    Miller SM; Zimmerman JB
    Water Res; 2010 Nov; 44(19):5722-9. PubMed ID: 20594571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads.
    Ngah WS; Ab Ghani S; Kamari A
    Bioresour Technol; 2005 Mar; 96(4):443-50. PubMed ID: 15491825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).
    Jiménez-Cedillo MJ; Olguín MT; Fall C; Colin-Cruz A
    J Environ Manage; 2013 Mar; 117():242-52. PubMed ID: 23376307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water.
    Gupta A; Sankararamakrishnan N
    Bioresour Technol; 2010 Apr; 101(7):2173-9. PubMed ID: 20005095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis.
    Hu X; Ding Z; Zimmerman AR; Wang S; Gao B
    Water Res; 2015 Jan; 68():206-16. PubMed ID: 25462729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate.
    Laus R; de Fávere VT
    Bioresour Technol; 2011 Oct; 102(19):8769-76. PubMed ID: 21824768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V).
    Yang T; Chen ML; Liu LH; Wang JH; Dasgupta PK
    Environ Sci Technol; 2012 Feb; 46(4):2251-6. PubMed ID: 22296291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.
    Kleinert S; Muehe EM; Posth NR; Dippon U; Daus B; Kappler A
    Environ Sci Technol; 2011 Sep; 45(17):7533-41. PubMed ID: 21761933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.
    Nagar R; Sarkar D; Makris KC; Datta R
    Chemosphere; 2010 Feb; 78(8):1028-35. PubMed ID: 20071004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent.
    Guo H; Stüben D; Berner Z
    J Colloid Interface Sci; 2007 Nov; 315(1):47-53. PubMed ID: 17662298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.