BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23622983)

  • 21. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater.
    Dousová B; Fuitová L; Grygar T; Machovic V; Kolousek D; Herzogová L; Lhotka M
    J Hazard Mater; 2009 Jun; 165(1-3):134-40. PubMed ID: 18990496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater.
    Shakoor MB; Niazi NK; Bibi I; Shahid M; Sharif F; Bashir S; Shaheen SM; Wang H; Tsang DCW; Ok YS; Rinklebe J
    Sci Total Environ; 2018 Dec; 645():1444-1455. PubMed ID: 30248866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution.
    Gupta K; Ghosh UC
    J Hazard Mater; 2009 Jan; 161(2-3):884-92. PubMed ID: 18502578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications.
    Chauhan D; Dwivedi J; Sankararamakrishnan N
    Environ Sci Pollut Res Int; 2014; 21(15):9430-42. PubMed ID: 24756676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide.
    Saha S; Sarkar P
    J Hazard Mater; 2012 Aug; 227-228():68-78. PubMed ID: 22647233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe).
    Dos Santos HH; Demarchi CA; Rodrigues CA; Greneche JM; Nedelko N; Slawska-Waniewska A
    Chemosphere; 2011 Jan; 82(2):278-83. PubMed ID: 20943252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.
    Gutierrez-Muñiz OE; García-Rosales G; Ordoñez-Regil E; Olguin MT; Cabral-Prieto A
    J Environ Manage; 2013 Jan; 114():1-7. PubMed ID: 23201599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method.
    Tang W; Li Q; Gao S; Shang JK
    J Hazard Mater; 2011 Aug; 192(1):131-8. PubMed ID: 21684075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions.
    Caporale AG; Punamiya P; Pigna M; Violante A; Sarkar D
    J Hazard Mater; 2013 Sep; 260():644-51. PubMed ID: 23832056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin.
    Chen AH; Liu SC; Chen CY; Chen CY
    J Hazard Mater; 2008 Jun; 154(1-3):184-91. PubMed ID: 18031930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of a novel chitosan polymer-based adsorbent for the removal of chromium (III) in aqueous solutions.
    Zuo X; Balasubramanian R
    Carbohydr Polym; 2013 Feb; 92(2):2181-6. PubMed ID: 23399274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri.
    Manirethan V; Raval K; Balakrishnan RM
    Environ Pollut; 2020 Feb; 257():113576. PubMed ID: 31744681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V).
    Vázquez Mejía G; Martínez-Miranda V; Fall C; Linares-Hernández I; Solache-Ríos M
    Environ Technol; 2016; 37(5):558-68. PubMed ID: 26362939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.