These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23623065)

  • 21. Role of crystal arrangement on the mechanical performance of enamel.
    An B; Wang R; Zhang D
    Acta Biomater; 2012 Oct; 8(10):3784-93. PubMed ID: 22743111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride.
    Iijima M; Du C; Abbott C; Doi Y; Moradian-Oldak J
    Eur J Oral Sci; 2006 May; 114 Suppl 1():304-7; discussion 327-9, 382. PubMed ID: 16674703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [High resolution electron microscopy of the crystalline structure in remineralized enamel].
    Tanaka N
    Shikwa Gakuho; 1989 Sep; 89(9):1441-78. PubMed ID: 2641199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructural observation of single-crystal apatite fibres.
    Aizawa M; Porter AE; Best SM; Bonfield W
    Biomaterials; 2005 Jun; 26(17):3427-33. PubMed ID: 15621231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observations on structural features and characteristics of biological apatite crystals. 6. Observation on lattice imperfection of human tooth and bone crystals. I.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Sep; 40(3):147-65. PubMed ID: 8403108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of functionally graded CO3 apatite as surface biodegradable crystals.
    Okazaki M; Takahashi J
    Biomaterials; 1999 Jun; 20(12):1073-8. PubMed ID: 10382822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of enamel hardness by its crystallographic dimensions.
    Eimar H; Ghadimi E; Marelli B; Vali H; Nazhat SN; Amin WM; Torres J; Ciobanu O; Albuquerque Junior RF; Tamimi F
    Acta Biomater; 2012 Sep; 8(9):3400-10. PubMed ID: 22684114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray Linear Dichroism in Apatite.
    Stifler CA; Wittig NK; Sassi M; Sun CY; Marcus MA; Birkedal H; Beniash E; Rosso KM; Gilbert PUPA
    J Am Chem Soc; 2018 Sep; 140(37):11698-11704. PubMed ID: 30182719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructure of dental enamel afflicted with hypoplasia: an atomic force microscopic study.
    Batina N; Renugopalakrishnan V; Casillas Lavín PN; Guerrero JC; Morales M; Garduño-Juárez R; Lakka SL
    Calcif Tissue Int; 2004 Mar; 74(3):294-301. PubMed ID: 14583837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic force microscopy study of tooth surfaces.
    Farina M; Schemmel A; Weissmüller G; Cruz R; Kachar B; Bisch PM
    J Struct Biol; 1999 Mar; 125(1):39-49. PubMed ID: 10196115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High resolution electron microscopic technique applied to the detection of distortions in apatite crystallites during amelogenesis.
    Voegel JC; Weiss MP; Frank RM
    J Biol Buccale; 1981 Jun; 9(2):183-91. PubMed ID: 6943143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro albumin binding on apatite crystals from developing enamel.
    Menanteau J; Gregoire M; Daculsi G; Jans I
    Bone Miner; 1987 Nov; 3(2):137-41. PubMed ID: 3505196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observations of structural features and characteristics of biological apatite crystals. 3. Observation on ultrastructure of human dentin crystals.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Mar; 40(1):29-44. PubMed ID: 8384934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the surface characteristics of various substrates on fluorapatite crystal growth, alignment, and spatial orientation.
    Czajka-Jakubowska AE; Liu J; Chang SR; Clarkson BH
    Med Sci Monit; 2009 Jun; 15(6):MT84-8. PubMed ID: 19478709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue.
    Cao Y; Mei ML; Li QL; Lo EC; Chu CH
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):410-20. PubMed ID: 24354267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the crystallinity of hydroxyapatite powder and structure of enamel treated with several concentrations of ammonium hexafluorosilicate.
    Suge T; Ishikawa K; Matsuo T
    Am J Dent; 2012 Oct; 25(5):299-302. PubMed ID: 23243979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-oriented assembly of nano-apatite particles: a subunit mechanism for building biological mineral crystals.
    Robinson C
    J Dent Res; 2007 Aug; 86(8):677-9. PubMed ID: 17652193
    [No Abstract]   [Full Text] [Related]  

  • 39. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation and growth of apatite by a self-assembled polycrystalline bioceramic.
    Karlinsey RL; Yi K; Duhn CW
    Bioinspir Biomim; 2006 Mar; 1(1):12-9. PubMed ID: 17671300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.