These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 23623082)
41. Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Chang HY; Hsiung TM; Huang YF; Huang CC Environ Sci Technol; 2011 Feb; 45(4):1534-9. PubMed ID: 21268634 [TBL] [Abstract][Full Text] [Related]
42. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Lin YW; Huang CC; Chang HT Analyst; 2011 Mar; 136(5):863-71. PubMed ID: 21157604 [TBL] [Abstract][Full Text] [Related]
43. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Hu D; Sheng Z; Gong P; Zhang P; Cai L Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194 [TBL] [Abstract][Full Text] [Related]
44. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters. Huang P; Li S; Gao N; Wu F Analyst; 2015 Nov; 140(21):7313-21. PubMed ID: 26347906 [TBL] [Abstract][Full Text] [Related]
45. A selective fluorescence probe for mercury ion based on the fluorescence quenching of terbium(III)-doped cadmium sulfide composite nanoparticles. Fu J; Wang L; Chen H; Bo L; Zhou C; Chen J Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(3):625-9. PubMed ID: 20663708 [TBL] [Abstract][Full Text] [Related]
46. One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of silver(I) and mercury(II) ions. Wang ZX; Ding SN Anal Chem; 2014 Aug; 86(15):7436-45. PubMed ID: 24979236 [TBL] [Abstract][Full Text] [Related]
47. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Gong J; Zhou T; Song D; Zhang L; Hu X Anal Chem; 2010 Jan; 82(2):567-73. PubMed ID: 20014816 [TBL] [Abstract][Full Text] [Related]
48. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles. Khodaveisi J; Shabani AM; Dadfarnia S; Moghadam MR; Hormozi-Nezhad MR Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():709-13. PubMed ID: 26474243 [TBL] [Abstract][Full Text] [Related]
49. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Du Y; Liu R; Liu B; Wang S; Han MY; Zhang Z Anal Chem; 2013 Mar; 85(6):3160-5. PubMed ID: 23438694 [TBL] [Abstract][Full Text] [Related]
50. Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury(II) in water. Fu XC; Wu J; Nie L; Xie CG; Liu JH; Huang XJ Anal Chim Acta; 2012 Mar; 720():29-37. PubMed ID: 22365117 [TBL] [Abstract][Full Text] [Related]
51. "Turn-on" chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles. Cai S; Lao K; Lau C; Lu J Anal Chem; 2011 Dec; 83(24):9702-8. PubMed ID: 22049919 [TBL] [Abstract][Full Text] [Related]
52. Mercaptopyridine-Functionalized Gold Nanoparticles for Fiber-Optic Surface Plasmon Resonance Hg Yuan H; Ji W; Chu S; Liu Q; Qian S; Guang J; Wang J; Han X; Masson JF; Peng W ACS Sens; 2019 Mar; 4(3):704-710. PubMed ID: 30785267 [TBL] [Abstract][Full Text] [Related]
53. Metal-induced aggregation of mononucleotides-stabilized gold nanoparticles: an efficient approach for simple and rapid colorimetric detection of Hg(II). Xu Y; Deng L; Wang H; Ouyang X; Zheng J; Li J; Yang R Chem Commun (Camb); 2011 Jun; 47(21):6039-41. PubMed ID: 21528141 [TBL] [Abstract][Full Text] [Related]
54. L-Cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury(II) ions. Ma X; Wang Z; He S; Zhao J; Lai X; Xu J Mikrochim Acta; 2019 Aug; 186(9):632. PubMed ID: 31422480 [TBL] [Abstract][Full Text] [Related]
55. Fluorescent Au@Ag core-shell nanoparticles with controlled shell thickness and Hg(II) sensing. Guha S; Roy S; Banerjee A Langmuir; 2011 Nov; 27(21):13198-205. PubMed ID: 21913719 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Huang CC; Chen CT; Shiang YC; Lin ZH; Chang HT Anal Chem; 2009 Feb; 81(3):875-82. PubMed ID: 19119843 [TBL] [Abstract][Full Text] [Related]
57. Mercury Speciation with Fluorescent Gold Nanocluster as a Probe. Yang JY; Yang T; Wang XY; Chen ML; Yu YL; Wang JH Anal Chem; 2018 Jun; 90(11):6945-6951. PubMed ID: 29747508 [TBL] [Abstract][Full Text] [Related]
58. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Lee JS; Mirkin CA Anal Chem; 2008 Sep; 80(17):6805-8. PubMed ID: 18665608 [TBL] [Abstract][Full Text] [Related]
59. Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles. Yan L; Chen Z; Zhang Z; Qu C; Chen L; Shen D Analyst; 2013 Aug; 138(15):4280-3. PubMed ID: 23722274 [TBL] [Abstract][Full Text] [Related]
60. Ion-directed assembly of gold nanorods: a strategy for mercury detection. Placido T; Aragay G; Pons J; Comparelli R; Curri ML; Merkoçi A ACS Appl Mater Interfaces; 2013 Feb; 5(3):1084-92. PubMed ID: 23305173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]