These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23623100)

  • 21. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.
    Pattanayak DK; Fukuda A; Matsushita T; Takemoto M; Fujibayashi S; Sasaki K; Nishida N; Nakamura T; Kokubo T
    Acta Biomater; 2011 Mar; 7(3):1398-406. PubMed ID: 20883832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds.
    Liu X; Wu S; Yeung KW; Chan YL; Hu T; Xu Z; Liu X; Chung JC; Cheung KM; Chu PK
    Biomaterials; 2011 Jan; 32(2):330-8. PubMed ID: 20869110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.
    Ryan GE; Pandit AS; Apatsidis DP
    Biomaterials; 2008 Sep; 29(27):3625-3635. PubMed ID: 18556060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous titanium with entangled structure filled with biodegradable magnesium for potential biomedical applications.
    Jiang G; Wang C; Li Q; Dong J; He G
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():142-9. PubMed ID: 25492182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications.
    Zhuravleva K; Chivu A; Teresiak A; Scudino S; Calin M; Schultz L; Eckert J; Gebert A
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2280-7. PubMed ID: 23498259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Preparation of porous Ti metal composite scaffold with bioactivity].
    Zhao J; Lu X; Wang J; Weng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):795-8. PubMed ID: 19813613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionally graded porous scaffolds made of Ti-based agglomerates.
    Nazari KA; Hilditch T; Dargusch MS; Nouri A
    J Mech Behav Biomed Mater; 2016 Oct; 63():157-163. PubMed ID: 27389321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved polymeric sponge replication method for biomedical porous titanium scaffolds.
    Wang C; Chen H; Zhu X; Xiao Z; Zhang K; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1192-1199. PubMed ID: 27772721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment.
    Li JP; de Wijn JR; Van Blitterswijk CA; de Groot K
    Biomaterials; 2006 Mar; 27(8):1223-35. PubMed ID: 16169073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal Fabrication of Highly Porous Titanium Bio-Scaffold with a Load-Bearable Property.
    Lee H; Liao JD; Sivashanmugan K; Liu BH; Su YH; Yao CK; Juang YD
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone.
    Fu Q; Hong Y; Liu X; Fan H; Zhang X
    Biomaterials; 2011 Oct; 32(30):7333-46. PubMed ID: 21764439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of biocompatible titanium scaffolds using space holder technique.
    Dezfuli SN; Sadrnezhaad SK; Shokrgozar MA; Bonakdar S
    J Mater Sci Mater Med; 2012 Oct; 23(10):2483-8. PubMed ID: 22736051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.