These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23623124)

  • 1. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation.
    Fu L; Zhou P; Zhang S; Yang G
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.
    Innala M; Riebe I; Kuzmenko V; Sundberg J; Gatenholm P; Hanse E; Johannesson S
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):302-8. PubMed ID: 23895194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White biotechnology for cellulose manufacturing--the HoLiR concept.
    Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W
    Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of wet nanocellulose membranes produced by different bacterial strains for healing full-thickness skin defects.
    Yuan H; Chen L; Hong FF
    Carbohydr Polym; 2022 Jun; 285():119218. PubMed ID: 35287849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular study of wound healing after using biosynthesized BNC/Fe
    Moniri M; Boroumand Moghaddam A; Azizi S; Abdul Rahim R; Zuhainis Saad W; Navaderi M; Arulselvan P; Mohamad R
    Int J Nanomedicine; 2018; 13():2955-2971. PubMed ID: 29861630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery of antiseptic solutions by a bacterial cellulose wound dressing: Uptake, release and antibacterial efficacy of octenidine and povidone-iodine.
    Bernardelli de Mattos I; Nischwitz SP; Tuca AC; Groeber-Becker F; Funk M; Birngruber T; Mautner SI; Kamolz LP; Holzer JCJ
    Burns; 2020 Jun; 46(4):918-927. PubMed ID: 31653329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip.
    Li Y; Wang S; Huang R; Huang Z; Hu B; Zheng W; Yang G; Jiang X
    Biomacromolecules; 2015 Mar; 16(3):780-9. PubMed ID: 25629225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of Aminoalkylsilane-Grafted Bacterial Nanocellulose with ZnO-NPs-Doped Pullulan Electrospun Nanofibers for Multifunctional Wound Dressing.
    Shahriari-Khalaji M; Hu G; Chen L; Cao Z; Andreeva T; Xiong X; Krastev R; Hong FF
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3933-3946. PubMed ID: 34296596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites.
    Soares da Silva FAG; Fernandes M; Souto AP; Ferreira EC; Dourado F; Gama M
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9143-9154. PubMed ID: 31650194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphotonic staging of chronic wounds and evaluation of sterile, optical transparent bacterial nanocellulose covering: A diagnostic window into human skin.
    Springer S; Zieger M; Hipler UC; Lademann J; Albrecht V; Bueckle R; Meß C; Kaatz M; Huck V
    Skin Res Technol; 2019 Jan; 25(1):68-78. PubMed ID: 29923636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model.
    Lang N; Merkel E; Fuchs F; Schumann D; Klemm D; Kramer F; Mayer-Wagner S; Schroeder C; Freudenthal F; Netz H; Kozlik-Feldmann R; Sigler M
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1013-21. PubMed ID: 25064053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.
    Qiu Y; Qiu L; Cui J; Wei Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():303-309. PubMed ID: 26652377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.