These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 23623239)

  • 41. How plants communicate using the underground information superhighway.
    Bais HP; Park SW; Weir TL; Callaway RM; Vivanco JM
    Trends Plant Sci; 2004 Jan; 9(1):26-32. PubMed ID: 14729216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges of modifying root traits in crops for agriculture.
    Meister R; Rajani MS; Ruzicka D; Schachtman DP
    Trends Plant Sci; 2014 Dec; 19(12):779-88. PubMed ID: 25239776
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved.
    Fujita K; Sasaki Y; Kitahara K
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7451-7457. PubMed ID: 31384991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arabinogalactan proteins: rising attention from plant biologists.
    Pereira AM; Pereira LG; Coimbra S
    Plant Reprod; 2015 Mar; 28(1):1-15. PubMed ID: 25656950
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development.
    Gong SY; Huang GQ; Sun X; Li P; Zhao LL; Zhang DJ; Li XB
    Plant Biol (Stuttg); 2012 May; 14(3):447-57. PubMed ID: 22222112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beneficial bacteria of agricultural importance.
    Babalola OO
    Biotechnol Lett; 2010 Nov; 32(11):1559-70. PubMed ID: 20635120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Review: structure and modifications of arabinogalactan proteins (AGPs).
    Leszczuk A; Kalaitzis P; Kulik J; Zdunek A
    BMC Plant Biol; 2023 Jan; 23(1):45. PubMed ID: 36670377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection.
    Liu Y; Zhang N; Qiu M; Feng H; Vivanco JM; Shen Q; Zhang R
    FEMS Microbiol Lett; 2014 Apr; 353(1):49-56. PubMed ID: 24612247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions.
    Mark GL; Dow JM; Kiely PD; Higgins H; Haynes J; Baysse C; Abbas A; Foley T; Franks A; Morrissey J; O'Gara F
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17454-9. PubMed ID: 16301542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?
    Dimkpa CO
    J Basic Microbiol; 2014 Sep; 54(9):889-904. PubMed ID: 24913194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Back to the future with the AGP-Ca2+ flux capacitor.
    Lamport DT; Varnai P; Seal CE
    Ann Bot; 2014 Oct; 114(6):1069-85. PubMed ID: 25139429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plant-Microbe Symbiosis: What Has Proteomics Taught Us?
    Khatabi B; Gharechahi J; Ghaffari MR; Liu D; Haynes PA; McKay MJ; Mirzaei M; Salekdeh GH
    Proteomics; 2019 Aug; 19(16):e1800105. PubMed ID: 31218790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhizosphere chemical dialogues: plant-microbe interactions.
    Badri DV; Weir TL; van der Lelie D; Vivanco JM
    Curr Opin Biotechnol; 2009 Dec; 20(6):642-50. PubMed ID: 19875278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere.
    Cox DE; Dyer S; Weir R; Cheseto X; Sturrock M; Coyne D; Torto B; Maule AG; Dalzell JJ
    Sci Rep; 2019 Dec; 9(1):19899. PubMed ID: 31882903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fucosylated arabinogalactan-proteins are required for full root cell elongation in arabidopsis.
    van Hengel AJ; Roberts K
    Plant J; 2002 Oct; 32(1):105-13. PubMed ID: 12366804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inside the root microbiome: bacterial root endophytes and plant growth promotion.
    Gaiero JR; McCall CA; Thompson KA; Day NJ; Best AS; Dunfield KE
    Am J Bot; 2013 Sep; 100(9):1738-50. PubMed ID: 23935113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory.
    Kong HG; Song GC; Ryu CM
    Environ Microbiol Rep; 2019 Aug; 11(4):479-486. PubMed ID: 31054200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arabinogalactan protein motif-containing receptor-like kinases are likely to play the negative feedback factor to maintain proper root hair length.
    Cho HT
    Plant Signal Behav; 2016 Sep; 11(9):e1226454. PubMed ID: 27562432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A bacterial-fungal metaproteomic analysis enlightens an intriguing multicomponent interaction in the rhizosphere of Lactuca sativa.
    Moretti M; Minerdi D; Gehrig P; Garibaldi A; Gullino ML; Riedel K
    J Proteome Res; 2012 Apr; 11(4):2061-77. PubMed ID: 22360353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant-bacteria interactions in the removal of pollutants.
    Segura A; Ramos JL
    Curr Opin Biotechnol; 2013 Jun; 24(3):467-73. PubMed ID: 23098915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.